精英家教网 > 高中数学 > 题目详情

(本题满分12分)

是函数的两个极值点.

(1)若,求函数的解析式;

(2)若,求的最大值;

(3)设函数,当时,

求证:

 

 

 

【答案】

(1)

(2)的最大值为

(3)成立

【解析】(I)∵,∴          

依题意有,∴.                          

解得,∴. .                             

    (II)∵,

依题意,是方程的两个根,且

      ∴.

      ∴,∴.

      ∵.

      设,则.

      由,由.

      即:函数在区间上是增函数,在区间上是减函数,

     ∴当时,有极大值为96,∴上的最大值是96,

     ∴的最大值为.                                                      

(III) 证明:∵是方程的两根,

.                                              

,∴.

 

,即                                           ∴

.                                    

成立.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案