已知抛物线的焦点为椭圆的右焦点,且椭圆的长轴长为4,M、N是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:,直线与的斜率之积为,证明:存在定点使
得为定值,并求出的坐标;
(3)若在第一象限,且点关于原点对称,垂直于轴于点,连接 并延长交椭圆于点,记直线的斜率分别为,证明:.
(1);(2)存在使得;(3)证明过程详见试题解析.
【解析】
试题分析:(1)由双曲线的焦点与椭圆的焦点重合求出椭圆中的,再由,求出所求椭圆方程为;(2)先设,由,结合椭圆的标准方程可以得到使得为定值;(3)要证明就是要考虑,详见解析.
试题解析:(1)由题设可知:因为抛物线的焦点为,
所以椭圆中的又由椭圆的长轴为4得
故
故椭圆的标准方程为:
(2)设,
由可得:
由直线OM与ON的斜率之积为可得:
,即
由①②可得:
M、N是椭圆上的点,故
故,即
由椭圆定义可知存在两个定点,
使得动点P到两定点距离和为定值;
(3)设,由题设可知 ,
由题设可知斜率存在且满足.
将③代入④可得:⑤
点在椭圆,
故
考点:直线与圆锥曲线.
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
9y2 |
8 |
|
2 |
3 |
x2 |
a2 |
y2 |
b2 |
2 |
3 |
r1 |
r2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
2m |
3 |
x2 |
4m2 |
y2 |
3m2 |
2m |
3 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市浦东新区高三4月高考预测(二模)理科数学试卷(解析版) 题型:解答题
(1)设椭圆:与双曲线:有相同的焦点,是椭圆与双曲线的公共点,且的周长为,求椭圆的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆”的方程为.设“盾圆”上的任意一点到的距离为,到直线的距离为,求证:为定值;
(3)由抛物线弧:()与第(1)小题椭圆弧:()所合成的封闭曲线为“盾圆”.设过点的直线与“盾圆”交于两点,,且(),试用表示;并求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.
已知椭圆的长轴长是焦距的两倍,其左、右焦点依次为、,抛物线的准线与轴交于,椭圆与抛物线的一个交点为.
(1)当时,求椭圆的方程;
(2)在(1)的条件下,直线过焦点,与抛物线交于两点,若弦长等于的周长,求直线的方程;
(3)由抛物线弧和椭圆弧
()合成的曲线叫“抛椭圆”,是否存在以原点为直角顶点,另两个顶点落在“抛椭圆”上的等腰直角三角形,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)第一题满分4分,第二题满分6分,第三题满分8分.
已知椭圆的长轴长是焦距的两倍,其左、右焦点依次为、,抛物线的准线与轴交于,椭圆与抛物线的一个交点为.
(1)当时,求椭圆的方程;
(2)在(1)的条件下,直线过焦点,与抛物线交于两点,若弦长等于的周长,求直线的方程;
(3)由抛物线弧和椭圆弧
()合成的曲线叫“抛椭圆”,是否存在以原点为直角顶点,另两个顶点落在“抛椭圆”上的等腰直角三角形,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com