精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求函数在区间上的最值;

2)讨论的单调性.

【答案】1;(2)当时,上单调递增;当时,上单调递减,在上单调递增;当时,上单调递减.

【解析】

1)求导的定义域,求导函数,利用函数的最值在极值处与端点处取得,即可求得在区间上的最值;

2)求导函数,分类讨论,利用导数的正负,可确定函数的单调性;

解:(1)当时,

所以

因为的定义域为

所以由,可得.

因为

所以在上,.

2)由题可得

①当,即时,

,所以上单调递减;

②当时,

所以上单调递增;

③当时,由可得,即

可得,即

所以上单调递减,

上单调递增.

综上:当时,上单调递增;

时,上单调递减,

上单调递增;

时,上单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)求曲线在点处的切线方程;

2)若关于的方程有三个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)当时,求函数的最大值;

2)设,求函数的最大值;

3)已知,求函数的最大值;

4)设,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最大时,点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的定义域;

2)试判断函数的奇偶性并证明;

3)若,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)指出的单调性(不要求证明);

2)若有的值;

3)若,求使不等式恒成立的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果A1B1C1的三个内角的余弦值分别等于A2B2C2的三个内角的正弦值,则( )

A.A1B1C1A2B2C2都是锐角三角形

B.A1B1C1A2B2C2都是钝角三角形

C.A1B1C1是钝角三角形,A2B2C2是锐角三角形

D.A1B1C1是锐角三角形,A2B2C2是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,abc分别是角ABC的对边,x=(2acb),y=(cosB,cosC),且x·y=0.

(1)求B的大小;

(2)若b,求||的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:

答对题目数


8

9



2

13

12

8


3

37

16

9

(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;

(2)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.

查看答案和解析>>

同步练习册答案