精英家教网 > 高中数学 > 题目详情

【题目】某同学用收集到的6组数据对制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线的方程:,相关系数为,相关指数为;经过残差分析确定点为“离群点”(对应残差过大的点),把它去掉后,再用剩下的5组数据计算得到回归直线的方程:,相关系数为,相关指数为.则以下结论中,不正确的是( )

A. B.

C. D.

【答案】D

【解析】分析:利用回归方程的性质,利用相关系数和相关指数分析解答.

详解:从图形中可以看出,两个变量是正相关,所以选项A是正确的;从图形中可以看出,回归直线的纵截距是正数,所以选项BC是正确的;因为其中=真实值-预报值=残差,值越大,说明残差的平方和越小,也就是说模型的拟合效果越好.所以选项D是错误的.故答案为:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区上年度电价为/kWh,年用电量为kWh.本年度计划将电价降低到055/ kWh075/ kWh之间,而用户期望电价为040/ kWh.经测算,下调电价后新增用电量与实际电价与用户的期望电价的差成反比(比例系数为),该地区电力的成本价为030/ kWh

1)写出本年度电价下调后,电力部门的收益与实际电价之间的函数关系式;

2)设=,当电价最低定为多少时仍可保证电力部门的收益比上一年至少增长20%?(注:收益=实际电量×(实际电价-成本价))

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋时期的著名数学家秦九韶在他的著作《数学九章》中提出了秦九韶算法来计算多项式的值,在执行如图算法的程序框图时,若输入的n=5,x=2,则输出V的值为(
A.15
B.31
C.63
D.127

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教师调查了名高三学生购买的数学课外辅导书的数量,将统计数据制成如下表格:

男生

女生

总计

购买数学课外辅导书超过

购买数学课外辅导书不超过

总计

(Ⅰ)根据表格中的数据,是否有的把握认为购买数学课外辅导书的数量与性别相关;

(Ⅱ)从购买数学课外辅导书不超过本的学生中,按照性别分层抽样抽取人,再从这人中随机抽取人询问购买原因,求恰有名男生被抽到的概率.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=logax(a>0a≠1)的图象过点(4,2),

(1)a的值.

(2)g(x)=f(1-x)+f(1+x),g(x)的解析式及定义域.

(3)(2)的条件下,g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在本校任选了一个班级,对全班50名学生进行了作业量的调查,根据调查结果统计后,得到如下的列联表,已知在这50人中随机抽取1人,认为作业量大的概率为.

认为作业量大

认为作业量不大

合计

男生

18

女生

17

合计

50

(Ⅰ)请完成上面的列联表;

(Ⅱ)根据列联表的数据,能否有的把握认为“认为作业量大”与“性别”有关?

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

span>5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则下列结论正确的是( )

A.时,函数上有最小值;

B.时,函数上有最小值;

C.对任意的实数,函数的图象关于点对称;

D.方程可能有三个实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面是正方形,底面.

(1)求证:直线平面

(2)当的值为多少时,二面角的大小为

查看答案和解析>>

同步练习册答案