精英家教网 > 高中数学 > 题目详情

【题目】已知直线与抛物线相交于两个不同点,点是抛物线在点处的切线的交点。

(1)若直线经过抛物线的焦点,求证:

(2)若,且直线经过点,求的最小值。

【答案】(1)见证明;(2)1

【解析】

(1)求得抛物线焦点的坐标,当直线的斜率时,设出直线方程,联立直线的方程和抛物线方程,写出韦达定理.求得过点切线的方程,联立两条切线方程求得交点的坐标,计算,由此证得.当直线的斜率时,根据直线的方程和点的坐标证得.从而证得成立.2)根据题意求得抛物线的方程,当直线的斜率时,设出直线的方程,代入抛物线方程,写出韦达定理,由弦长公式求得,求得点坐标后利用点到直线的距离公式求得三角形的高,由此求得三角形面积的表达式,利用配方法求得面积的最小值.当直线的斜率时,求得三角形的面积为.综上,的最小值为.

解:(1)由题意可得

②当时,设直线,点的坐标分别为

,∴

过点的切线方程为,即

过点的切线方程为

,∴

,∴

②当时,则直线,∴

(2)由题意可得

①当时,设直线,点的坐标分别为

,得,∴

由(1)可得过点的切线方程分别为

,∴

到直线的距离

时,取最小值1;

②当时,则直线,∴

综上,的最小值为1。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,ADBC,平面PAC⊥平面ABCDAB=AD=DC=1

ABC=DCB=60EPC上一点.

Ⅰ)证明:平面EAB⊥平面PAC

Ⅱ)若△PAC是正三角形EPC中点求三棱锥AEBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为.

(1)求的方程;

(2)如图,经过椭圆左顶点且斜率为的直线交于两点,交轴于点,点为线段的中点,若点关于轴的对称点为,过点为坐标原点)垂直的直线交直线于点,且面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂预购软件服务,有如下两种方案:

方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;

方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.

(1)设日收费为元,每天软件服务的次数为,试写出两种方案中的函数关系式;

(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一栋6层楼房里,每个房间的门牌号均为三位数,首位代表楼层号,后两位代表房间号,如218表示的是第2层第18号房间,现已知有宝箱藏在如下图18个房间里的某一间,其中甲同学只知道楼层号,乙同学只知道房间号,不知道楼层号,现有以下甲乙两人的一段对话:

甲同学说:我不知道,你肯定也不知道;

乙同学说:本来我也不知道,但是现在我知道了;

甲同学说:我也知道了.

根据上述对话,假设甲乙都能做出正确的推断,则藏有宝箱的房间的门牌号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图已知椭圆是长轴的一个端点,弦过椭圆的中心,且.

(Ⅰ)求椭圆的方程:

(Ⅱ)设为椭圆上异于且不重合的两点,且的平分线总是垂直于轴,是否存在实数,使得,若存在,请求出的最大值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,是边长为的正三角形,点为正方形的中心,为线段的中点,.则下列结论正确的是(

A.平面平面

B.直线是异面直线

C.线段的长度相等

D.直线与平面所成的角的余弦值为

查看答案和解析>>

同步练习册答案