【题目】四棱锥中,底面是边长为2的菱形,.,且平面,,点分别是线段上的中点,在上.且.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面的成角的正弦值;
(Ⅲ)请画出平面与四棱锥的表面的交线,并写出作图的步骤.
【答案】(1)见解析(2)(3)四边形为平面与四棱锥的表面的交线
【解析】分析:(Ⅰ)推导出,由此能证明平面;
(Ⅱ)推导出,,,以O为原点,OA、OB、OP分别为x、y、z轴建立空间直角做消息,利用向量法能求出直线AB与平面EFG的所成角的正弦值;
(Ⅲ)法1:延长分别交延长线于,连接,发现刚好过点,,连接,则四边形为平面与四棱锥的表面的交线.
法2:记平面与直线的交点为,设,,利用向量法求出,从而即为点.连接,,则四边形为平面与四棱锥的表面的交线.
解析:解:(Ⅰ)在中,因为点分别是线段上的中点,
所以
因为平面,平面.
所以平面.
(Ⅱ)因为底面是边长为2的菱形,
所以,
因为平面,
所以,,
如图,建立空间直角坐标系,则依题意可得
,,,,,,,
所以,,
设平面的法向量为,则由可得,
令,可得
因为.
所以直线与平面的成角的正弦值为
(Ⅲ)法Ⅰ:延长分别交延长线于,连接,发现刚好过点,,连接,则四边形为平面与四棱锥的表面的交线.
法2:记平面与直线的交点为,设,则
由,可得.
所以即为点.
所以连接,,则四边形为平面与四棱锥的表面的交线.
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若在区间上不单调,求的取值范围;
(2)设,若函数在区间恒有意义,求实数的取值范围;
(3)已知方程在有两个不相等的实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个定点,, 动点满足,设动点的轨迹为曲线,直线:.
(1)求曲线的轨迹方程;
(2)若与曲线交于不同的、两点,且 (为坐标原点),求直线的斜率;
(3)若,是直线上的动点,过作曲线的两条切线、,切点为、,探究:直线是否过定点,若存在定点请写出坐标,若不存在则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为)
组别 | 步数分组 | 频数 |
2 | ||
10 | ||
2 | ||
(Ⅰ)写出的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记组步数数据的平均数与方差分别为,,组步数数据的平均数与方差分别为,,试分别比较与以,与的大小;(只需写出结论)
(Ⅲ)从上述两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线关于轴对称,它的顶点在坐标原点,点、、均在抛物线上.
(1)写出该抛物线的方程及其准线方程;
(2)当与的斜率存在且倾斜角互补时,求的值及直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列五个命题:
①函数的一条对称轴是;
②函数的图象关于点(,0)对称;
③正弦函数在第一象限为增函数
④若,则,其中
以上四个命题中正确的有 (填写正确命题前面的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com