精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=-x2+(a+4)x+2+b,log2f(1)=3,且g(x)=f(x)-2x为偶函数.
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,+∞)的最大值为1-3m,求m的值.

分析 (1)利用函数是偶函数,以及log2f(1)=3列出方程求出a,b,即可得到函数的解析式.
(2)利用函数f(x)的对称轴,讨论对称轴是否在区间[m,+∞)内,然后通过函数的最大值为1-3m,求解m即可.

解答 解:(1)函数f(x)=-x2+(a+4)x+2+b,log2f(1)=3,可得log2(a+b+5)=3,
可得a+b+5=8,即a+b=3.
g(x)=f(x)-2x=-x2+(a+2)x+2+b为偶函数,可得a=-2,
所以b=5.
可得函数f(x)的解析式f(x)=-x2+2x+7.
(2)函数f(x)在区间[m,+∞)的最大值为1-3m,
即函数f(x)=-x2+2x+7在区间[m,+∞)的最大值为1-3m.
函数的对称轴为:x=1,当m≤1时,可得-1+2+7=1-3m,解得m=-3.
当m>1时,可得-m2+2m+7=1-3m,解得m=-1(舍去).或m=6.
综上m=-3或6.

点评 本题考查偶函数的性质,二次函数的性质闭区间上的最值的求法,考查函数的最值以及几何意义,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求$\frac{cos80°-cos20°}{sin80°+sin20°}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设随机变量ξ~B(n,p),且E(ξ)=1.6,D(ξ)=1.28,则n,p的值依次为(  )
A.8,0.2B.4,0.4C.5,0.32D.7,0.45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在矩形ABCD中,AB=2BC,M、N分别是AB和CD的中点,在以A、B、C、D、M、N为起点和终点的所有向量中,相等的非零向量共有24对.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow{a}$+$\overrightarrow{b}$=(2,-8),$\overrightarrow{a}$-$\overrightarrow{b}$=(-8,16),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则cosθ=$-\frac{63}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求y=$\sqrt{1-x}$+$\sqrt{x}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{1}{2}$,顺次连接其四个顶点构成的四边形的面积为4$\sqrt{3}$.
(1)求椭圆C的方程;
(2)如图,设斜率为k的动直线l与椭圆C在第一象限只有一个公共点P,若过原点O的直线l1与l垂直,求点P到直线l1的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某班有34位同学,座位号记为01,02,…34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.
49 54 43 54 82 17 37 93 23 78 87 35 20
96 43 84 26 34 91 64 57 24 55 06 88 77
04 74 47 67 21 76 33 50 25 83 92 12 06
选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是 (  )
A.23B.09C.02D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={y|y=log${\;}_{\frac{1}{2}}$x,0<x<1},B={y|y=2x,x<0].则A∩B等于(  )
A.{y|0<y<$\frac{1}{2}$}B.{y|0<y<1}C.{y|$\frac{1}{2}$<y<1}D.

查看答案和解析>>

同步练习册答案