精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+cx+d(a≠0)的对称中心为M(x0,f(x0)),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x0)=0.若函数f(x)=x3-3x2,则
①f(x)的对称中心是
 

②:f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=
 
分析:由题意对已知函数求两次导数可得图象关于点(1,-2)对称,即f(x)+f(2-x)=-4,而要求的式子可用倒序相加法求解,共有2011对-4和一个f(1)=-2,可得答案.
解答:解:①由题意f(x)=x3-3x2
则f′(x)=3x2-6x,
f″(x)=6x-6,
由f″(x0)=0得6x0-6=1
解得x0=1,而f(1)=-2,
故函数f(x)=x3-3x2关于点(1,-2)对称,
②∵函数f(x)=x3-3x2关于点(1,-2)对称,
∴f(x)+f(2-x)=-4,
f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=-4×2011+(-2)=-8046.
故答案为:①(1,-2),②-8046
点评:本题主要考查导数的基本运算,利用条件求出函数的对称中心是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案