【题目】定义运算“”:对于任意,(等式的右边是通常的加减乘运算).若数列的前n项和为,且对任意都成立.
(1)求的值,并推导出用表示的解析式;
(2)若,令,证明数列是等差数列;
(3)若,令,数列满足,求正实数b的取值范围.
【答案】(1),;(2)证明见解析;(3)
【解析】
(1)直接利用信息的应用和赋值法的应用求出函数的关系式的表达式;
(2)利用构造法对和数列的关系式进行变换,进一步利用定义求出数列的通项公式;
(3)利用(1)和(2)的结论,进一步函数的单调性和极限的应用求出参数的取值范围.
(1)∵,
.
令,得,
.
当时,有.
,
.
(2),
,整理得.
.
∴数列是以首项为1、公差为的等差数列.
(3)结合(1),且,
,即.
.
当时,,此时,,总是满足;
当时,,此时,是等比数列.
.
.
若时,数列是单调递增数列,且时,,不满足.
若时,, 数列是单调递减数列,故又,同样恒有成立;
若时,,数列是单调递增数列,.
由,即此时当时,满足.
综上,所求实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得分,负者得分,平局两人各得分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若是函数的一个极值点,试求的单调区间;
(2)若且,是否存在实数a,使得在区间上的最大值为4?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,两铁路线垂直相交于站,若已知千米,甲火车从站出发,沿方向以千米小时的速度行驶,同时乙火车从站出发,沿方向,以千米小时的速度行驶,至站即停止前行(甲车扔继续行驶)(两车的车长忽略不计).
(1)求甲、乙两车的最近距离(用含的式子表示);
(2)若甲、乙两车开始行驶到甲,乙两车相距最近时所用时间为小时,问为何值时最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年3月5日,国务院总理李克强作出的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部2014年印发的《学术论文抽检办法》通知中规定:每篇抽检的学术论文送3位同行专家进行评议,3位专家中有2位以上(含3位)专家评议意见为“不合格”的学术论文,将认定为“存在问题学术论文”.有且只有1位专家评议意见为“不合格”的学术论文,将再送另外2位同行专家(不同于前3位专家)进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学术论文,将认定为“存在问题学术论文”.设每篇学术论文被每位专家评议为“不合格”的概率均为,且各篇学术论文是否被评议为“不合格”相互独立.
(1)若,求抽检一篇学术论文,被认定为“存在问题学术论文”的概率;
(2)现拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的总评审费用1500元;若某次评审抽检论文总数为3000篇,求该次评审费用期望的最大值及对应的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)设椭圆与双曲线有相同的焦点、,是椭圆与双曲线的公共点,且△的周长为6,求椭圆的方程;我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”;
(2)如图,已知“盾圆”的方程为,设“盾圆”上的任意一点到的距离为,到直线的距离为,求证:为定值;
(3)由抛物线弧()与第(1)小题椭圆弧()所合成的封闭曲线为“盾圆”,设过点的直线与“盾圆”交于、两点,,,且(),试用表示,并求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,其中.
(1)若,写出的单调区间:
(2)若函数恰有三个不同的零点,且这些零点之和为-2,求a、b的值;
(3)若函数在上有四个不同零点,求的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为,
(l)设为参数,若,求直线的参数方程;
(2)已知直线与曲线交于,设,且,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com