精英家教网 > 高中数学 > 题目详情

【题目】已知关于的不等式.

1)是否存在使对所有的实数,不等式恒成立?若存在,求出的取值范围;若不存在,请说明理由;

2)设不等式对于满足的一切的值都成立,求的取值范围.

【答案】1不存在实数2

【解析】

试题分析:(1)当m=0时,经检验不满足条件;解得m0时,设f(x)=mx2-2x-m+1,则由题意可得有,解得 m.综合可得结论.(2)由题意-2m2,设gm=x2-1m+1-2x),则由题意可得,由此求得x的取值范围

试题解析:1)要使不等式恒成立,只需,无解.

不存在实数使对所有的实数,不等式恒成立.

2)由.

,得.

,则.

时,,满足题意;

时,,不满足题意;

时,要使,只需

,解得.

综上,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司有30名男职员和20名女职员,公司进行了一次全员参与的职业能力测试,现随机询问了该公司5名男职员和5名女职员在测试中的成绩(满分为30分),可知这5名男职员的测试成绩分别为16,24,18,

22,20,5名女职员的测试成绩分别为18,23,23,18,23,则下列说法一定正确的是( )

A. 这种抽样方法是分层抽样

B. 这种抽样方法是系统抽样

C. 这5名男职员的测试成绩的方差大于这5名女职员的测试成绩的方差

D. 该测试中公司男职员的测试成绩的平均数小于女职员的测试成绩的平均数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若对,不等式恒成立,求实数的取值范围;

(2)记,那么当时,是否存在区间使得函数在区间上的值域恰好为?若存在,请求出区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为椭圆C长轴长为4.

(1)求椭圆的方程;

(2)已知直线与椭圆交于A,B两点是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在求出k的值;若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(10分)如图所示,在三棱锥中,底面,动点D在线段AB

(1)求证:平面平面

(2)时,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆上任意一点到右焦点的距离的最大值为.

1)求椭圆的方程;

2)已知点是线段上异于的一个定点(为坐标原点),是否存在过点且与轴不垂直的直线与椭圆交于两点,使得,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定:大桥上的车距与车速和车长的关系满足为正的常数).假定车身长为,当车速为时,车距为个车身长.

(1)写出车距关于车速的函数关系式;

(2)应规定怎样的车速,才能使大桥上每小时通过的车辆最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥PABCD中,底面是边长为a的正方形,侧棱PDaPAPCa

(1)求证:PD⊥平面ABCD

(2)求证:平面PAC⊥平面PBD

(3)求二面角PACD的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,椭圆的离心率为是椭圆的焦点,直线的斜率为为坐标原点.

()的方程;

)设过点的直线相交于两点,当的面积最大时,求的方程.

查看答案和解析>>

同步练习册答案