精英家教网 > 高中数学 > 题目详情
设首项为a1的正项数列{an}的前n项和为Sn,q为非零常数,已知对任意正整数n,m,Sn+m=Sm+qmSn总成立.
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)若不等的正整数m,k,h成等差数列,试比较amm•ahh与ak2k的大小;
(Ⅲ)若不等的正整数m,k,h成等比数列,试比较
a
1
m
m
a
1
h
h
a
2
k
k
的大小.
分析:(Ⅰ)令n=m=1,得a2=qa1,令m=1,得Sn+1=S1+qSn(1),从而Sn+2=S1+qSn+1两式相减即可得出an+2=qan+1,进而可判断出数列{an}是等比数列
(Ⅱ)根据m,k,h成等差数列,可知m+h=2k,进而可判定m2+h2
1
2
(m+h)2=2k2
,进而根据等比数列的通项公式分q大于、等于和小于1三种情况判断.
(Ⅲ)正整数m,k,h成等比数列,则m•h=k2,判断出
1
m
+
1
h
>2
1
mh
=
2
k
,进而根据等差根据等比数列的通项公式分a1和q大于、等于和小于1三种情况判断.
解答:(Ⅰ)证:因为对任意正整数n,m,Sn+m=Sm+qmSn总成立,
令n=m=1,得S2=S1+qS1,则a2=qa1
令m=1,得Sn+1=S1+qSn(1),从而Sn+2=S1+qSn+1(2),
(2)-(1)得an+2=qan+1,(n≥1)
综上得an+1=qan(n≥1),所以数列{an}是等比数列
(Ⅱ)正整数m,k,h成等差数列,
则m+h=2k,
所以m2+h2
1
2
(m+h)2=2k2

a
m
m
a
h
h
=
a
m
1
qm2-m
a
h
1
qh2-h=
a
2k
1
qm2+h2-m-h

①当q=1时,amm•ahh=a12k=ak2k
②当q>1时,
a
m
m
a
h
h
=
a
2k
1
qm2+h2-m-h
a
2k
1
q2k2-2k=(a1qk-1)2k=
a
2k
k

③当0<q<1时,
a
m
m
a
h
h
=
a
2k
1
qm2+h2-m-h
a
2k
1
q2k2-2k=(a1qk-1)2k=
a
2k
k

(Ⅲ)正整数m,k,h成等比数列,则m•h=k2,则
1
m
+
1
h
>2
1
mh
=
2
k

所以
a
1
m
m
a
1
h
h
=(a1qm-1)
1
m
(a1qh-1)
1
h
=
a
1
m
+
1
h
1
q2-
1
m
-
1
h
=q2(
a1
q
)
1
m
+
1
h
ak
2
k
=q2(
a1
q
)
2
k

①当a1=q,即
a1
q
=1
时,
a
1
m
m
a
1
h
h
=
a
2
k
k
=q2=ak
2
k

②当a1>q,即
a1
q
>1
时,
a
1
m
m
a
1
h
h
=q2(
a1
q
)
1
m
+
1
h
q2(
a1
q
)
2
k
=ak
2
k

③当a1<q,即
a1
q
<1
时,
a
1
m
m
a
1
h
h
=q2(
a1
q
)
1
m
+
1
h
q2(
a1
q
)
2
k
=ak
2
k
点评:本题主要考查了等比关系的确定和等比数列的性质.等比数列常与不等式一块考查,应引起重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•盐城一模)如果有穷数列a1,a2,a3,…,an(n为正整数)满足条件a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如,由组合数组成的数列
C
0
m
, 
C
1
m
, …, 
C
m
m
就是“对称数列”.
(1)设{bn}是项数为7的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项;
(2)设{cn}是项数为2k-1(正整数k>1)的“对称数列”,其中ck,ck+1,…,c2k-1是首项为50,公差为-4的等差数列.记{cn}各项的和为S2k-1.当k为何值时,S2k-1取得最大值?并求出S2k-1的最大值;
(3)对于确定的正整数m>1,写出所有项数不超过2m的“对称数列”,使得1,2,22,…,2m-1依次是该数列中连续的项;当m>1500时,求其中一个“对称数列”前2008项的和S2008

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•闵行区二模)若等差数列{an}的前n项和为Sn,且满足
Sn
S2n
为常数,则称该数列为S数列.
(1)判断an=4n-2是否为S数列?并说明理由;
(2)若首项为a1的等差数列{an}(an不为常数)为S数列,试求出其通项;
(3)若首项为a1的各项为正数的等差数列{an}为S数列,设n+h=2008(n、h为正整数),求
1
Sn
+
1
Sh
的最小值.

查看答案和解析>>

科目:高中数学 来源:上海市卢湾区2010届高三第二次模拟考试数学文科试题 题型:044

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.

设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.

(1)若a1,a2,a5成等比数列,求其公比q.

(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.

(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项.求证:当t为大于1的正整数时,该数列为{an}的无穷等比子数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如果有穷数列a1,a2,a3,…,an(n为正整数)满足条件a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如,由组合数组成的数列,,…,就是“对称数列”.

(1)设{bn}是项数为7的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项.

(2)设{cn}是项数为2k-1(正整数k>1)的“对称数列”,其中ck,ck+1,…,c2k-1是首项为50,公差为-4的等差数列.记{cn}各项的和为S2k-1,当k为何值时,S2k-1取得最大值?并求出S2k-1的最大值.

(3)对于确定的正整数m>1,写出所有项数不超过2m的“对称数列”,使得1,2,22,…,2m-1依次是该数列中连续的项;当m>1 500时,求其中一个“对称数列”前2 008项的和S2008.

(文)如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.

(1)设{bn}是7项的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项;

(2)设{cn}是49项的“对称数列”,其中c25,c26,…,c49是首项为1,公比为2的等比数列,求{cn}各项的和S;

(3)设{dn}是100项的“对称数列”,其中d51,d52,…,d100是首项为2,公差为3的等差数列,求{dn}前n项的和Sn(n=1,2,…,100).

查看答案和解析>>

科目:高中数学 来源:2008年上海市闵行区高考数学二模试卷(理科)(解析版) 题型:解答题

若等差数列{an}的前n项和为Sn,且满足为常数,则称该数列为S数列.
(1)判断an=4n-2是否为S数列?并说明理由;
(2)若首项为a1的等差数列{an}(an不为常数)为S数列,试求出其通项;
(3)若首项为a1的各项为正数的等差数列{an}为S数列,设n+h=2008(n、h为正整数),求的最小值.

查看答案和解析>>

同步练习册答案