精英家教网 > 高中数学 > 题目详情

【题目】已知定义在区间(0,+∞)上的函数f(x)满足f(x1)-f(x2),且当x>1时,f(x)<0.

(1)证明:f(x)为单调递减函数.

(2)f(3)=-1,求f(x)[2,9]上的最小值.

【答案】(1)见解析(2)-2

【解析】

(1)任取任取x1x2(0,+∞),且x1>x2进而可得>1,接下来结合已知即可确定的大小关系,从而证得结果;

(2)由(1)的结论可知的最小值是接下来结合已知可得据此即可求得的值,得到结果.

解:(1)证明:任取x1x2(0,+∞),且x1>x2

>1,由于当x>1时,f(x)<0,

所以f<0,即f(x1)-f(x2)<0,

因此f(x1)<f(x2),

所以函数f(x)在区间(0,+∞)上是单调递减函数.

(2)因为f(x)(0,+∞)上是单调递减函数,

所以f(x)[2,9]上的最小值为f(9).

ff(x1)-f(x2)得,

ff(9)-f(3),而f(3)=-1,

所以f(9)=-2.

所以f(x)[2,9]上的最小值为-2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为鼓励大学毕业生自主创业,某市出台了相关政策:由政府协调,企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.某大学毕业生按照相关政策投资销售一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月的销售量y(单位:件)与销售单价x(单位:元)之间的关系近似满足一次函数:

1)设他每月获得的利润为w(单位:元),写出他每月获得的利润w与销售单价x的函数关系.

2)相关部门规定,这种节能灯的销售单价不得高于25元.如果他想要每月获得的利润不少于3000元,那么政府每个月为他承担的总差价的取值范围是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,为线段的垂直平分线,交与点上异于的任意一点.

的值;

判断的值是否为一个常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数满足,当时,,关于的不等式上有且只有200个整数解,则实数的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形,

,点在线段上,且 平面.

1)求证:平面平面

2)当四棱锥的体积最大时,求四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过椭圆: 的左顶点和上顶点,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。

(1)求椭圆方程;

(2)求线段的长度的最小值;

(3)当线段的长度最小时,在椭圆上有两点,使得,的面积都为,求直线y轴上的截距。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数使得函数在定义域内为增函数;实数使得函数上存在两个零点,且

分别求出条件中的实数的取值范围;

甲同学认为“的充分条件”,乙同学认为“的必要条件”,请判断两位同学的说法是否正确,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年6月湖北潜江将举办第六届“中国湖北(潜江)龙虾节”,为了解不同年龄的人对“中国湖北(潜江)龙虾节”的关注程度,某机构随机抽取了年龄在20—70岁之间的100人进行调查,经统计“年轻人”与“中老年人”的人数之比为

关注

不关注

合计

年轻人

30

中老年人

合计

50

50

100

(1)根据已知条件完成上面的列联表,并判断能否有99﹪的把握认为关注“中国湖北(潜江)龙虾节”是否和年龄有关?

(2)现已经用分层抽样的办法从中老年人中选取了6人进行问卷调查,若再从这6人中选取3人进行面对面询问,记选取的3人中关注“中国湖北(潜江)龙虾节”的人数为随机变量,求的分布列及数学期望。

附:参考公式其中

临界值表:

0.05

0.010

0.001

3.841

6635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,为偶函数,且(e是自然对数的底数).

1)分别求出的解析式;

2)记,请判断的奇偶性和单调性,并分别说明理由;

3)若存在,使得不等式能成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案