精英家教网 > 高中数学 > 题目详情
11.已知sinα=$\frac{3}{5}$,且α∈($\frac{π}{2}$,π).
(1)求tan(α+$\frac{π}{4}$)的值;
(2)若β∈(0,$\frac{π}{2}$),且cos(α-β)=$\frac{1}{3}$,求cosβ的值.

分析 (1)利用同角三角函数基本关系式可求cosα,tanα的值,进而利用两角和的正切函数公式即可化简求值.
(2)由已知可求范围α-β∈(0,π),利用同角三角函数基本关系式可求sin(α-β)的值,由β=α-(α-β),利用两角差的余弦函数公式即可计算得解.

解答 (本题满分为12分)
解:(1)∵sinα=$\frac{3}{5}$,且α∈($\frac{π}{2}$,π),
∴cosα=$-\frac{4}{5}$,…(2分)
∴tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,…(4分)
∴tan(α+$\frac{π}{4}$)=$\frac{tanα+1}{1-tanα}$=$\frac{1}{7}$.…(6分)
(2)∵α∈($\frac{π}{2}$,π),β∈(0,$\frac{π}{2}$),
∴α-β∈(0,π),…(7分)
又∵cos(α-β)=$\frac{1}{3}$,
∴sin(α-β)=$\frac{2\sqrt{2}}{3}$,…(9分)
∴cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β) …(11分)
=(-$\frac{4}{5}$)×$\frac{1}{3}$+$\frac{3}{5}$×$\frac{2\sqrt{2}}{3}$=$\frac{6\sqrt{2}-4}{15}$.…(12分)

点评 本题主要考查了同角三角函数基本关系式,两角和的正切函数公式,两角差的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(2sinx,$\sqrt{3}$cosx),$\overrightarrow{b}$=(-sinx,2sinx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C的对边,若角C为锐角,且f($\frac{C}{2}$-$\frac{π}{12}$)=$\frac{1}{3}$,a=$\sqrt{5}$,S△ABC=2$\sqrt{5}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|2x-6≤2-2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.
(Ⅰ)写出集合B的所有子集;
(Ⅱ)若A∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知半径为$\sqrt{2}$的圆C,其圆心在射线y=-2x(x<0)上,且与直线x+y+1=0相切.
(1)求圆C的方程;
(2)从圆C外一点P(x0,y0))向圆引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求△PMC面积的最小值,并求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在长方体ABCD-A1B1C1D1中,AB=$\sqrt{3}$,AA1=2,AD=1,E、F分别是AA1和BB1的中点,G是DB上的点,且DG=2GB.
(Ⅰ)求三棱锥B1-EBC的体积;
(Ⅱ)作出长方体ABCD-A1B1C1D1被平面EB1C所截的截面(只要作出,说明结果即可);
(Ⅲ)求证:GF∥平面EB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的交点,过F2作垂直于x轴的直线交双曲线于点P和Q,且△F1PQ为正三角形,则双曲线的渐近线方程为y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是某几何体的三视图,其正视图、俯视图均为直径为2的半圆,则该几何体的表面积为(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=|x-a|+|x-3|.
(1)当a=1时,求f(x)的最小值;
(2)若不等式f(x)≤3的解集非空,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在△ABC中,AD⊥AB,$\overrightarrow{BC}$=2$\sqrt{3}$$\overrightarrow{BD}$,|$\overrightarrow{AD}$|=1,则$\overrightarrow{AC}$•$\overrightarrow{AD}$=(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.-2$\sqrt{3}$

查看答案和解析>>

同步练习册答案