精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2,对任意实数t,gt(x)=-tx+1.
(1)求函数y=g3(x)-f(x)的单调区间;
(2)在(0,2]上是单调递减的,求实数t的取值范围;
(3)若f(x)<mg2(x)对任意恒成立,求正数m的取值范围.
【答案】分析:(1)利用配方法求函数y=g3(x)-f(x)的单调区间;
(2)由已知得,,利用单调性的定义,可知要使h(x)在(0,2]上是单调递减的,必须h(x1)-h(x2)>0恒成立,从而只需1-tx1x2>0恒成立,即恒成立,故可求实数t的取值范围;(3)解法一:由f(x)<mg2(x),得x2<m(-2x+1),分离参数可得,从而问题转化为,利用配方法可求函数的最小值3,故可求正数m的取值范围;
解法二:由f(x)<mg2(x),得x2+2mx-m<0.构造f(x)=x2+2mx-m,则f(x)<0对任意恒成立,只需,即,从而可求正数m的取值范围.
解答:解:(1)y=g3(x)-f(x)=…(1分)
所以函数y的单调递增区间是,单调递减区间是.…(3分)
(2)由已知得,,…(4分)
设0<x1<x2≤2,
=…(6分)
要使h(x)在(0,2]上是单调递减的,必须h(x1)-h(x2)>0恒成立.   …(7分)
因为x2-x1>0,0<x1x2<4,
所以1-tx1x2>0恒成立,即恒成立,…(8分)[
因为,所以
所以实数t的取值范围是.…(9分)
(3)解法一:由f(x)<mg2(x),得x2<m(-2x+1),①…(10分)
因为m>0且,所以①式可化为,②…(11分)
要使②式对任意恒成立,只需(12分)
因为,所以当时,函数取得最小值3,…(12分)
所以,又m>0,所以
故正数m的取值范围是.…(13分)
解法二:由f(x)<mg2(x),得x2+2mx-m<0,…(10分)
令f(x)=x2+2mx-m,则f(x)<0对任意恒成立,…(11分)
只需,即,解得,…(12分)
故正数m的取值范围是.                             …(13分)
点评:本题考查的重点是求参数的范围问题,考查恒成立问题,考查函数的单调区间,解题的关键是利用分离参数法,进而求函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案