精英家教网 > 高中数学 > 题目详情

【题目】某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:

(1)求y关于x的回归方程

(2)判定y与x之间是正相关还是负相关,若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.

【答案】(1); (2)负相关,预测约为9.56千元.

【解析】

(1)根据所给的数据求出变量的平均数根据最小二乘法所需要的数据求出线性回归方程的系数,再根据样本中心点一定在线性回归方程上求出的值可得出线性回归方程; (2)代入所求的线性回归方程求出对应的的值即可预测该店当日的营额.

(1)

∴回归方程为:

(2)∵,∴y与x之间是负相关.

当x=6时,

∴该店当日的营业额约为9.56千元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高二年级共有800名学生参加了数学测验(满分150分),已知这800名学生的数学成绩均不低于90分,将这800名学生的数学成绩分组如:,得到的频率分布直方图如图所示,则下列说法中正确的是( )

;②这800名学生中数学成绩在110分以下的人数为160; ③这800名学生数学成绩的中位数约为121.4;④这800名学生数学成绩的平均数为125.

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,各个侧面均是边长为的正方形,为线段的中点

(Ⅰ)求证:⊥平面

(Ⅱ)求证:直线∥平面

(Ⅲ)设为线段上任意一点,在内的平面区域(包括边界)是否存在点,使,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)若函数有两个零点,求的取值范围,并证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.

组号

分组

频数

频率

第1组

5

第2组

第3组

30

第4组

20

第5组

10

(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;

(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三边长分别为,,,MAB边上的点,P是平面ABC外一点.给出下列四个命题:①若平面ABC,则三棱锥的四个面都是直角三角形;②若平面ABC,且M是边AB的中点,则有;③若,平面ABC,则面积的最小值为;④若,P在平面ABC上的射影是内切圆的圆心,则点P到平面ABC的距离为.其中正确命题的序号是________.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,使得为真命题,求的取值范围;

2)若不等式的解集为D,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处有相同的切线,求函数的极值;

2)若,讨论函数的单调性.

查看答案和解析>>

同步练习册答案