分析 由双曲线方程求得a=2$\sqrt{3}$,由双曲线的定义可得 AF2+BF2 =4a+AB,△ABF2的周长是( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB,计算可得答案.
解答 解:由题意可得2a=4$\sqrt{3}$,由双曲线的定义可得
AF2-AF1=2a,BF2 -BF1=2a,∴AF2+BF2 -AB=4a,即AF2+BF2 =4a+AB.
△ABF2(F2为右焦点)的周长是 ( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB=4a+2AB=8$\sqrt{3}$+16.
故答案为:8$\sqrt{3}$+16.
点评 本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,求出AF2+BF2 =4a+AB 是解题的关键.
科目:高中数学 来源: 题型:选择题
A. | 10 | B. | 8 | C. | $\frac{10}{3}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,+∞) | B. | (1,2) | C. | ($\frac{1}{2}$,1) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x∈R,3x>0 | B. | ?x0∈R,lgx0=0 | ||
C. | $?x∈({0,\frac{π}{2}}),x>sinx$ | D. | $?{x_0}∈R,sin{x_0}+cos{x_0}=\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x+y-1=0 | B. | x-y-1=0 | C. | x+y+1=0 | D. | x-y+1=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com