精英家教网 > 高中数学 > 题目详情
8.如图,要在山坡上A、B两处测量与地面垂直的铁塔CD的高,由A、B两处测得塔顶C的仰角分别为60°和45°,AB长为40m,斜坡与水平面成30°角,则铁塔CD的高为$\frac{40\sqrt{3}}{3}$m.

分析 计算∠BCA=15°于是AC=AB=40,求出∠ADC,∠CAD,在△ACD中利用正弦定理得出CD.

解答 解:延长CD交过A,B的水平线于E,F,
∵∠CAE=60°,∠CBF=45°,∠DBF=30°
∴∠BCF=45°,∠ACE=30°,∠BDF=60°,
∴∠BCA=15°,∠ADC=120°,∠CBA=15°,∠CAD=30°.
∴AC=AB=40,
在△ACD中,由正弦定理得$\frac{AC}{sin∠ADC}=\frac{CD}{sin∠CAD}$,
即$\frac{40}{\frac{\sqrt{3}}{2}}=\frac{CD}{\frac{1}{2}}$,解得CD=$\frac{40\sqrt{3}}{3}$.
故答案为:$\frac{40\sqrt{3}}{3}$.

点评 本题考查了正弦定理,解三角形的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则P(-1<ξ<3)=(  )
A.0.683B.0.853C.0.954D.0.977

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从5位男同学和4位女同学中选出3位同学分别担任数、语、外三科的科代表,要求选出的3位同学中男女都要有,则不同的选派方案共有(  )
A.210种B.630种C.420种D.840种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定点M(-$\sqrt{2},0}$),N是圆C:(x-$\sqrt{2}}$)2+y2=16(C为圆心) 上的动点,MN的垂直平分线与NC交于点E.
(1)求动点E的轨迹方程C1
(2)直线l与轨迹C1交于P,Q两点,与抛物线C2:x2=4y交于A,B两点,且抛物线C2在点A,B处的切线垂直相交于S,设点S到直线l的距离为d,试问:是否存在直线l,使得d=$\sqrt{|{AB}|•|{PQ}|}$?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在△ABC中,角A、B、C的对边分别为a、b、c,向量$\overrightarrow m$=(b,c-2a),$\overrightarrow n$=(2cosC,1),且|$\overrightarrow m$+$\overrightarrow n$|=|$\overrightarrow m$-$\overrightarrow n$|.
(I)求∠B的大小;
(II)若b=2,求△ABC面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为了解某校学生暑期参加体育锻炼的情况,对某班M名学生暑期参加体育锻炼的次数进行了统计,得到如表的频率分布表与如图直方图:
组别锻炼次数频数(人)频率
1[2,6)20.04
2[6,10)110.22
3[10,14)16c
4[14,18)150.30
5[18,22)de
6[22,26]20.04
合计M1.00
(1)求频率分布表中M、d、e及频率分布直方图中f的值;
(2)求参加锻炼次数的众数(直接写出答案,不要求计算过程);
(3)若参加锻炼次数不少于18次为及格,估计这次体育锻炼的及格率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,AB=2,AC=3,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$,则$\overrightarrow{AD}$•$\overrightarrow{BD}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=($\frac{1}{2}$)x-log${\;}_{\frac{1}{2}}$x的零点所在的区间是(  )
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数y=sinx(x∈R)的图象上所有点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),再将所得图象向右平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,则y=g(x)的单调递增区间为(  )
A.[-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ](k∈Z)B.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)
C.[-$\frac{2π}{3}$+4kπ,$\frac{4π}{3}$+4kπ](k∈Z)D.[-$\frac{5π}{6}$+4kπ,$\frac{7π}{6}$+4kπ](k∈Z)

查看答案和解析>>

同步练习册答案