精英家教网 > 高中数学 > 题目详情

【题目】锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA,则cosA+sinC的取值范围是

【答案】(
【解析】解:已知等式a=2bsinA利用正弦定理化简得:sinA=2sinBsinA, ∵sinA≠0,
∴sinB=
∵B为锐角,
∴B=30°,即A+C=150°,
∴cosA+sinC=cosA+sin(150°﹣A)=cosA+ cosA+ sinA= cosA+ sinA= cosA+ sinA)= sin(A+60°),
∵60°<A<90°,∴120°<A+60°<150°,
<sin(A+60°)< ,即 sin(A+60°)<
则cosA+sinC的取值范围是( ).
所以答案是:( ).
【考点精析】认真审题,首先需要了解余弦定理的定义(余弦定理:;;).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(m+1)x+m,g(x)=﹣(m+4)x﹣4+m,m∈R.
(1)比较f(x)与g(x)的大小;
(2)解不等式f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题12分)已知函数

(1)=0,判断函数的单调性;

(2)时,<0恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 ,g(x)=x3﹣x2﹣3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1 , x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的 ,都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(cosα,sinα), =(cosβ,sinβ),(0<β<α<π).
(1)若 ,求证:
(2)设 ,若 ,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

1)当时,求不等式的解集;

(2)若不等式的解集为空集,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 有一个零点为4,且满足.

(1)求实数的值;

(2)试问:是否存在这样的定值,使得当变化时,曲线在点处的切线互相平行?若存在,求出的值;若不存在,请说明理由;

(3)讨论函数上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知梯形ABCD,AB∥CD,且AB=AD=2,CD=3.
(1)用向量 表示向量
(2)若AD⊥AB,求向量 夹角的余弦值.

查看答案和解析>>

同步练习册答案