精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=2x+2ax+b且$f(1)=\frac{5}{2}$,$f(2)=\frac{17}{4}$
(Ⅰ)求a,b的值;
(Ⅱ)判断并证明f(x)的奇偶性;
(Ⅲ)试判断f(x)在(-∞,0)上的单调性,并证明你的结论.

分析 (Ⅰ)代值计算,根据指数幂的运算性质,解得即可,
(Ⅱ)利用函数奇偶性求解即可,对于奇偶性的判断,只须考虑f(-x)与f(x)的关系即得;
(Ⅲ)单调性的定义对于单调性的证明,先在定义域中任取两个实数x1,x2,且x1<x2,再比较f(x1)-f(x2)即可;

解答 解:(Ⅰ)f(x)=2x+2ax+b且$f(1)=\frac{5}{2}$,$f(2)=\frac{17}{4}$,
∴2+2a+b=$\frac{5}{2}$,且22+22a+b=$\frac{17}{4}$,
即a+b=-1且2a+b=-2,
解得a=-1,b=0,
(Ⅱ)由(Ⅰ)可知f(x)=2x+2-x
∴f(-x)=2x+2-x=f(x),
∴f(x)为偶函数,
(Ⅲ)定义域中任取两个实数x1,x2,且x1<x2
则f(x1)-f(x2)=${2}^{{x}_{1}}$+${2}^{-{x}_{1}}$-${2}^{{x}_{2}}$-${2}^{-{x}_{1}}$
=(${2}^{{x}_{1}}$-${2}^{{x}_{2}}$)+(${2}^{-{x}_{1}}$-${2}^{{x}_{2}}$)=(${2}^{{x}_{1}}$-${2}^{{x}_{2}}$)+$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{{2}^{{x}_{1}}{2}^{{x}_{2}}}$=(${2}^{{x}_{1}}$-${2}^{{x}_{2}}$)($\frac{{2}^{{x}_{1}+{x}_{2}}-1}{{2}^{{x}_{1}}•{2}^{{x}_{2}}}$)
∵x1<x2
∴${2}^{{x}_{1}}$<${2}^{{x}_{2}}$,${2}^{{x}_{1}+{x}_{2}}$-1<0,
∴f(x1)-f(x2)>0,
∴f(x1)>f(x2)>0,
∴f(x)在(-∞,0)上为减函数.

点评 本小题主要考查函数单调性的应用、函数奇偶性的应用、函数的值等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.定义a⊕b=max{a,b},如:3⊕2=3,2⊕2=2,设$f(x)=({x^2}-\frac{15}{4})⊕({2^x})$,则函数f(x)的最小值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=(ax+1)lnx-\frac{1}{2}a{x^2}-bx+\frac{b}{e^x}(a,b∈R)$.
(1)若$a=b=\frac{1}{2}$,求函数$F(x)=f(x)-axlnx-\frac{b}{e^x}$的单调区间;
(2)若a=1,b=-1,求证:$f(x)+\frac{1}{2}a{x^2}+bx>lnx-1-2{e^{-2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)在定义域内满足:
(1)对于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);
(2)存在正数M,使得|f(x)|≤M,则称函数f(x)为“单通道函数”,给出以下4个函数:
①f(x)=sin(x+$\frac{x}{4}$)+cos(x+$\frac{π}{4}$),x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{x},-1≤x<0}\\{lo{g}_{\frac{1}{2}}(x+1)-1,0<x≤1}\end{array}\right.$,其中,“单通道函数”有①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.集合A={x|x2-2x>0},B={y|y=2x,x∈R},R是实数集,则(∁RB)∪A等于(  )
A.RB.(-∞,0]∪(2,+∞)C.(0,1]D.(-∞,1]∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设{an}是正数等差数列,{bn}是正数等比数列,且a1=b1,a11=b11,则(  )
A.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}>lg{a_6}>lg{b_6}$B.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{a_6}≥lg{b_6}$
C.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{b_6}≥lg{a_6}$D.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}<lg{a_6}<lg{b_6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列${a_1}=\frac{1}{3}$、${a_1}=\frac{1}{3}$满足:${a_1}=\frac{1}{3}$,an+bn=1,${b_{n+1}}=\frac{1}{{2-{b_n}}}$.
(1)求证:数列{$\frac{1}{{b}_{n}-1}$}是等差数列;
(2)求数列{an}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$y=sin2x-\sqrt{3}cos2x$的图象的一条对称轴方程为(  )
A.$x=\frac{π}{12}$B.$x=-\frac{π}{12}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知:如图所示,AB∥CD,OD2=BO•OE.求证:AD∥CE

查看答案和解析>>

同步练习册答案