精英家教网 > 高中数学 > 题目详情

【题目】定义:若对定义域内任意x都有a为正常数),则称函数a增函数.

(1)若(0,),试判断是否为“1距”增函数,并说明理由;

(2)若Ra增函数,求a的取值范围;

(3)若(﹣1,),其中kR,且为“2增函数,求的最小值.

【答案】(1)见解析; (2); (3).

【解析】

(1)利用“1增函数的定义证明即可;(2)由a增函数的定义得到上恒成立,求出a的取值范围即可;(3)由“2增函数可得到恒成立,从而得到恒成立,分类讨论可得到的取值范围,再由,可讨论出的最小值

(1)任意,,

因为,, 所以,所以,即是“1距”增函数。

(2).

因为是“距”增函数,所以恒成立,

因为,所以上恒成立,

所以,解得,因为,所以.

(3)因为,且为“2距”增函数,

所以时,恒成立,

时,恒成立,

所以

时,,即恒成立,

所以, 得;

时,

恒成立,

所以,得,

综上所述,得.

因为,所以

时,若取最小值为

时,若取最小值.

因为R上是单调递增函数,

所以当的最小值为;当的最小值为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A是函数y=lg(20﹣8x﹣x2)的定义域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B.

(1)若A∩B=,求实数a的取值范围;

(2)若¬p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现安排甲、乙、丙、丁、戊5名同学参加厦门市华侨博物院志愿者服务活动,每人从事礼仪、导游、翻译、讲解四项工作之一,每项工作至少有一人参加. 甲、乙不会导游但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是____________.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图5所示:将的图像向右平移个单位,可得到函数的图象,且图像关于原点对称,

(1)求的值;

(2)求的最小值,并写出的表达式;

(3)若关于的函数在区间上最小值为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若直线与曲线相切,求的值;

(2)若函数上不单调,且函数有三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)当时,若不等式恒成立,求实数的取值范围;

(3)若,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 线性回归直线至少经过其样本数据点中的一个点

B. 在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法

C. 在回归分析中,相关指数越大,模拟的效果越好

D. 在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为1的正方形沿对角线折起,使得平面平面,在折起后形成的三棱锥中,给出下列三种说法:

是等边三角形;②;③三棱锥的体积是.

其中正确的序号是__________(写出所有正确说法的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x+1|+|x﹣a|,a∈R. (Ⅰ)当a=2时,求不等式f(x)<4的解集.
(Ⅱ)当a< 时,对于x∈(﹣∞,﹣ ],都有f(x)+x≥3成立,求a的取值范围.

查看答案和解析>>

同步练习册答案