精英家教网 > 高中数学 > 题目详情
等差数列{an} 的前n项的和为Sn,且S5=45,S6=60.
(1)求{an} 的通项公式;
(2)若数列{bn} 满足bn-bn=an-1(n∉N*),且b1=3,设数列{
1
bn
}
的前n项和为Tn.求证:Tn
3
4
分析:(1)a6=S6-S5=15,由S6=
(a1+a6)×6
2
=60,解得a1=5,再由d=
a6-a1
6-1
=2,能求出{an} 的通项公式.
(2)由b2-b1=a1,b3-b2=a2,b4-b3=a3,…,bn-bn-1=an-1,叠加得bn-b1=
(a1+an-1)(n-1)
2
=
(5+2n+1)(n-1)
2
,所以bn=n2+2n.
1
bn
=
1
n2+2n
=
1
2
[
1
n
-
1
n+2
]
,由裂项求和法能够证明Tn
3
4
解答:(1)解:a6=S6-S5=15,由S6=
(a1+a6)×6
2
=60,
解得a1=5,又∵d=
a6-a1
6-1
=2,
所以an=2n+3.…4
(2)证明:∵b2-b1=a1
b3-b2=a2
b4-b3=a3

bn-bn-1=an-1
叠加得bn-b1=
(a1+an-1)(n-1)
2
=
(5+2n+1)(n-1)
2

所以bn=n2+2n.…(9分)

1
bn
=
1
n2+2n
=
1
2
[
1
n
-
1
n+2
]

Tn=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=
1
2
(
3
2
-
1
n+1
-
1
n+2
)

=
3
4
-
1
2
(
1
n+1
+
1
n+2
)<
3
4
.…(12分)
点评:本题考查数列通项公式和数列前n项和的求法,证明Tn
3
4
.解题时要认真审题,注意等差数列通项公式的应用和裂项求和法的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列{an}的前n项和Sn,若a1+a5-a7=4,a8-a2=8,则S9等于
108
108

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知等差数列{an}的前n项和为Sn,且S12=S36,S49=49
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=|an|,求数列{ bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d不为零,它的前n项和为Sn,设集合A={(an
Sn
n
)|n∈N*}
,若以A中元素作为点的坐标,这些点都在同一条直线上,那么这条直线的斜率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•温州一模)设等差数列{an}的前n项和为Sn,若a1=-5,且它的前11项的平均值是5.
(1)求等差数列的公差d;
(2)求使Sn>0成立的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是一个有n项的等差数列,其公差为d,前n项和Sn=11,,又知a1,a7,a10分别是另一个等比数列的前三项,求这个等差数列{an}的项数n.

查看答案和解析>>

同步练习册答案