精英家教网 > 高中数学 > 题目详情
8.设f(x)是定义在[-1,1]上的奇函数,f(1)=1,且对任意的a、b∈[-1,1],当a+b≠0时,都有$\frac{f(a)+f(b)}{a+b}$>0
(1)若a,b∈[-1,1]且a-b≠0,求证:$\frac{f(a)-f(b)}{a-b}$>0,并据此说明函数f(x)的单调性;
(2)解不等式f(x-$\frac{1}{2}$)<f($\frac{1}{4}$-x);
(3)若对于任意x∈[-1,1],m2+2mx-2≤f(x)恒成立,求负数m的取值范围.

分析 (1)运用奇函数的定义和单调性的定义,将b换为-b,即可得证;
(2)由f(x)在[-1,1]递增,可得不等式组,注意定义域,解不等式即可得到所求解集;
(3)由题意可得由m<0,即m2-2≤f(x)-2mx的最小值,运用单调性不等式右边函数的最小值,再解m的不等式即可得到所求范围.

解答 解:(1)证明:∵f(x)是定义在[-1,1]上奇函数,
∴f(-x)=-f(x).
∵对任意的a,b∈[-1,1],当a+b≠0时,都有$\frac{f(a)+f(b)}{a+b}$>0,
∴-b∈[-1,1],$\frac{f(a)+f(-b)}{a+(-b)}$>0.
∴$\frac{f(a)-f(b)}{a-b}$>0,
∴当a>b时,f(a)>f(b),
当a<b时,f(a)<f(b),
∴由a、b的任意性知:f(x)在区间[-1,1]上单调递增;
(2)由f(x)在[-1,1]递增,
f(x-$\frac{1}{2}$)<f($\frac{1}{4}$-x),
可得$\left\{\begin{array}{l}{-1≤x-\frac{1}{2}≤1}\\{-1≤\frac{1}{4}-x≤1}\\{x-\frac{1}{2}<\frac{1}{4}-x}\end{array}\right.$,即$\left\{\begin{array}{l}{-\frac{1}{2}≤x≤\frac{3}{2}}\\{-\frac{3}{4}≤x≤\frac{5}{4}}\\{x<\frac{3}{8}}\end{array}\right.$,
可得-$\frac{1}{2}$≤x<$\frac{3}{8}$.
则原不等式解集为[-$\frac{1}{2}$,$\frac{3}{8}$);
(3)对于任意x∈[-1,1],m2+2mx-2≤f(x)恒成立,
由m<0,即m2-2≤f(x)-2mx的最小值,
由f(x)在[-1,1]递增,2mx在[-1,1]递减,
且f(1)=1,f(-1)=-f(1)=-1,
可得f(x)-2mx的最小值为-1+2m,
即有m2-2≤2m-1,即m2-2m-1≤0,
解得1-$\sqrt{2}$≤m<0.
则负数m的取值范围为[1-$\sqrt{2}$,0).

点评 本题考查函数的奇偶性和单调性的运用,考查不等式恒成立问题的解法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在正方体ABCD-A1B1C1D1中.
( I)求证:AC⊥BD1
(Ⅱ)是否存在直线与直线 AA1,CC1,BD1都相交?若存在,请你在图中画出两条满足条件的直线(不必说明画法及理由);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知两条直线l1:2x+y-2=0与l2:2x-my+4=0.
(1)若直线l1⊥l2,求直线l1与l2交点P的坐标;
(2)若l1,l2以及x轴围成三角形的面积为1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在四棱台ABCD-A1B1C1D1中,底面ABCD是平行四边形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,∠BAD=60°.
(Ⅰ)证明:BD⊥平面ADD1A1
(Ⅱ)证明:CC1∥平面A1BD;
(Ⅲ)若DD1=AD,求直线CC1与平面ADD1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)满足:2f(x)•f(y)=f(x+y)+f(x-y),f(1)=$\frac{1}{2}$,且f(x)在[0,3]上单调递减,则方程f(x)=$\frac{1}{2}$在区间[-2014,2014]内根的个数为1343.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中为真命题的是(  )
A.命题“若x>1,则x2>1”的否命题B.命题“若x>y,则x>|y|”的逆命题
C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2≥1,则x≥1”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列变量关系是函数关系的是(  )
A.三角形的边长与面积之间的关系
B.等边三角形的边长与面积之间的关系
C.四边形的边长与面积之间的关
D.菱形的边长与面积之间的关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.P为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{{{a^2}-4}}=1(a>2)$上位于第一象限内一点,且$OP=2\sqrt{2}$,令∠POx=θ,则θ的取值范围是(0,$\frac{π}{12}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某工厂生产甲、乙两种产品所得利润分别为P和Q(万元),它们与投入资金m(万元)的关系有经验公式P=$\frac{1}{3}$m+65,Q=76+4$\sqrt{m}$,今将150万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投资金额不低于25万元.
(1)设对乙产品投入资金x万元,求总利润y(万元)关于x的函数关系式及其定义域;
(2)如何分配使用资金,才能使所得总利润最大?最大利润为多少?

查看答案和解析>>

同步练习册答案