(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点.
(Ⅰ)求证:CN⊥AB1;
(Ⅱ)求证:CN //平面AB1M.
证明:(Ⅰ)因为三棱柱ABC-A1B1C1中CC1⊥底面ABC,
所以BB1⊥平面ABC, 所以BB1⊥CN.…………………1分
因为AC=BC,N是AB的中点,
所以CN⊥AB. ……………………3分
因为AB∩BB1=B, ……………………4分
所以CN⊥平面AB B1A1. ……………………5分
所以CN⊥AB1. ……………………6分
(Ⅱ)(方法一)连结A1B交AB1于P. ……………………7分
因为三棱柱ABC-A1B1C1,
所以P是A1B的中点.
因为M,N分别是CC1,AB的中点,
所以NP // CM,且NP = CM, ……………………9分
所以四边形MCNP是平行四边形, ……………………10分
所以CN//MP. ……………………11分
因为CN平面AB1M,MP平面AB1M, ………………12分
所以CN //平面AB1M. ……………………14分
(方法二)取BB1中点P,连结NP,CP. ……………………7分
因为N,P分别是AB,BB1的中点,
所以NP //AB1.
因为NP平面AB1M,AB1平面AB1M,
所以NP //平面AB1M. ……………………10分
同理 CP //平面AB1M. ……………………11分
因为CP∩NP =P,
所以平面CNP //平面AB1M. ……………………13分
因为CN平面CNP,
所以CN //平面AB1M. ……………………14分
【解析】略
科目:高中数学 来源: 题型:
(07年北京卷理)(本小题共14分)
如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.
(I)求证:平面平面;
(II)当为的中点时,求异面直线与所成角的大小;
(III)求与平面所成角的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(07年北京卷文)(本小题共14分)
如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角的直二面角.是的中点.
(I)求证:平面平面;
(II)求异面直线与所成角的大小.
查看答案和解析>>
科目:高中数学 来源:2013届广东省高二下期中理科数学试卷(解析版) 题型:解答题
(本小题共14分)如图,四棱锥中,底面为平行四边形,,,⊥底面.
(1)证明:平面平面;
(2)若二面角为,求与平面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年北京市丰台区高三上学期期末考试理科数学 题型:解答题
(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若M,N分别是CC1,AB的中点,求证:CN //平面AB1M;
(Ⅲ)若,求二面角A-MB1-C的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com