精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:方程x2+y2﹣ax+y+1=0表示圆;命题q:方程2ax+(1﹣a)y+1=0表示斜率大于1的直线,若p∨q为真命题,p∧q为假命题,求a的取值范围.

【答案】解:若x2+y2﹣ax+y+1=0表示圆,
则a2+1﹣4>0,
解得:a∈(﹣∞, )∪( ,+∞),
故命题p:a∈(﹣∞, )∪( ,+∞),
若方程2ax+(1﹣a)y+1=0表示斜率大于1的直线,
>1解得:a∈(﹣∞,﹣1)∪(1,+∞),
故命题q:a∈(﹣∞,﹣1)∪(1,+∞),
若p∨q为真命题,p∧q为假命题,
则p,q一真一假;
当p真q假时,a∈(﹣∞, )∪( ,+∞)且a∈[﹣1,1],不存在满足条件的a值;
当p假q真时,a∈[﹣ ]且a∈(﹣∞,﹣1)∪(1,+∞),
故a∈[﹣ ,﹣1)∪(1, ]
【解析】若命题p∨q为真命题,p∧q,命题p,q一真一假,进而可得满足条件的a的取值范围.
【考点精析】利用命题的真假判断与应用对题目进行判断即可得到答案,需要熟知两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是(
A.
B.1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)讨论的单调性;

(Ⅱ)设).对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)证明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某建材公司在两地各有一家工厂,它们生产的建材由公司直接运往地.由于土路交通运输不便,为了减少运费,该公司预备投资修建一条从地或地直达地的公路;若选择从某地修建公路,则另外一地生产的建材可先运输至该地再运至以节约费用.已知之间为土路,土路运费为每吨千米20元,公路的运费减半,三地距离如图所示.为了制定修路计划,公司统计了最近10天两个工厂每天的建材产量,得到下面的柱形图,以两个工厂在最近10天日产量的频率代替日产量的概率.

(1)求“两地工厂某天的总日产量为20吨”的概率;

(2)以修路后每天总的运费的期望为依据,判断从哪一地修路更加划算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)求不等式﹣x2﹣2x+3<0的解集(用集合或区间表示) (Ⅱ)求不等式|x﹣3|<1的解集(用集合或区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题12分)设函数是定义域为R的奇函数.

(1)求k的值;

(2)若,试说明函数的单调性,并求使不等式恒成立的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测某种产品的质量(单位:千克),抽取了一个容量为N的样本,整理得到的数据作出了频率分布表和频率分布直方图如图:

分组

频数

频率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合计

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求频率分布直方图中d的值;
(Ⅲ)从该产品中随机抽取一件,试估计这件产品的质量少于25千克的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

同步练习册答案