精英家教网 > 高中数学 > 题目详情
2.已知f($\frac{x+1}{x-1}$)=$\frac{1}{{x}^{2}+1}$,则f(x)=$\frac{{x}^{2}-2x+1}{2{x}^{2}+2}$(x≠1).

分析 利用换元法,即可求出函数的解析式.

解答 解:令t=$\frac{x+1}{x-1}$,则x=$\frac{t+1}{t-1}$(t≠1),
∴f(t)=$\frac{1}{(\frac{t+1}{t-1})^{2}+1}$=$\frac{{t}^{2}-2t+1}{2{t}^{2}+2}$,
∴f(x)=$\frac{{x}^{2}-2x+1}{2{x}^{2}+2}$(x≠1),
故答案为:$\frac{{x}^{2}-2x+1}{2{x}^{2}+2}$(x≠1).

点评 本题考查函数的解析式,考查换元法,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知f(x)+2f(2-x)=3x2-8x+8,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设全集U=R,A={x|x2-x-6<0},B={x|x2+2x-8>0},C={x|x2-4x+3a2<0},
(1)求全集A,B,C;
(2)试求实数a的取值范围,使C⊆A∩B;
(3)试求实数a的取值范围,使C?∁UA∩∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若P为曲线y=lnx上一动点,Q为直线y=x+1上一动点,则|PQ|min=(  )
A.0B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=$\frac{x-2}{x+1}$的值域是{y|y≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)为奇函数,且在区间(-∞,0)上为减函数,f(-2)=0,求f(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.Z=1+$\sqrt{3}$i,i是虚数单位,则$\frac{1}{Z}$=$\frac{1}{4}-\frac{\sqrt{3}}{4}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,若c2=a2+b2,则△ABC是直角三角形且C=90°,试问:
(1)a、b、c满足什么关系时,△ABC是锐角三角形或钝角三角形?
(2)已知锐角三角形的边长分别为1、2、a.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知(x2+$\frac{1}{x}$)6的展开式中的常数项为a,则直线y=ax与曲线y=x3围成的封闭图形的面积为(  )
A.450B.225C.$\frac{225}{2}$D.$\frac{225}{4}$

查看答案和解析>>

同步练习册答案