精英家教网 > 高中数学 > 题目详情
14.反比例函数f(x)=$\frac{k}{x}$图象,如图,则(  )
A.常数k<-1
B.函数f(x)在定义域范围内,y随x的增大而减小
C.若点A(-1,m),B(2,n)在f(x)上,则m<n
D.函数f(x)图象对称轴的直线方程y=x

分析 根据反比例函数f(x)的图象与性质,对题目中的选项进行分析判断即可.

解答 解:根据反比例函数f(x)=$\frac{k}{x}$的图象在一、三象限知,k>0,A错误;
又函数f(x)在(-∞,0)和(0,+∞)上是单调减函数,B错误;
当点A(-1,m),B(2,n)在f(x)上时,
m=-k<0,n=$\frac{k}{2}$>0,∴m<n,C正确;
函数f(x)图象对称轴的直线方程为y=±x,∴D错误.
故选:C.

点评 本题考查了函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.和圆(x-3)2+(y-1)2=36关于直线x+y=0对称的圆的方程是(  )
A.(x+1)2+(y+3)2=36B.(x+1)2+(y+3)2=12C.(x-1)2+(y+3)2=36D.(x-1)2+(y-3)2=12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.甲,乙两人下棋,甲获胜的概率是60%,甲不输的概率是80%,甲、乙和棋的概率是20%.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列说法中正确的是②④
①三角形中三边之比等于相应的三个内角之比;
②在△ABC中,若sinA>sinB,则A>B;
③在△ABC的六个元素中,已知任意三个元素可求其他元素;
④面积公式中S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$absinC=$\frac{1}{2}$acsinB,其实质就是面积公式S=$\frac{1}{2}$ah=$\frac{1}{2}$bh=$\frac{1}{2}$ch(h为对应边上的高
)的变形;
⑤在△ABC中,若b2+c2>a2,则此三角形是锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知抛物线y2=2px(p>0)的焦点为F,过F的直线交抛物线于A、B两点.
(1)求证:$\frac{1}{|FA|}$+$\frac{1}{|FB|}$为定值;
(2)求AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设全集S={0,2,4,6,8},若A∩B={2},A∩∁SB={0,8},B∩∁SA={4},则下列结论中正确的是(  )
A.A={0,8}B.A∪B={0,2,4,6,8}C.SA∩∁SB={6}D.SA∪∁SB={6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知tana=3,求sin(2a+45°)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过抛物线y2=8x的焦点作圆(x-1)2+y2=4的弦,其中最短的弦长为(  )
A.$\sqrt{3}$B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.将下列集合用区间表示出来
(1){x|2x-1≥0};
(2){x|x<-4或-1<x≤2}.

查看答案和解析>>

同步练习册答案