精英家教网 > 高中数学 > 题目详情

【题目】某渔业公司年初用81万元购买一艘捕鱼船,第一年各种费用为1万元,以后每年都增加2万元,每年捕鱼收益30万元.

问第几年开始获利?

若干年后,有两种处理方案:方案一:年平均获利最大时,以46万元出售该渔船;

方案二:总纯收入获利最大时,以10万元出售该渔船问:哪一种方案合算?请说明理由.

【答案】(1)第4年开始获利;(2)见解析.

【解析】

设第n年开始获利,获利为y万元,利用数列列出n年的总费用为获利为利用二次函数的性质求解即可.

求出方案一的总收益,方案二的总收益,即可得到结果.

设第n年开始获利,获利为y万元,

由题意知,n年共收益30n万元,每年的费用是以1为首项,2为公差的等差数列,

n年的总费用为

获利为

解得

时,即第4年开始获利.

方案一:n年内年平均获利为

由于,当且仅当时取“”号.

万元

即前9年年平均收益最大,此时总收益为万元

方案二:总纯收入获利

时,取最大值144,此时总收益为

两种方案获利相等,但方案一中,所需的时间短,

方案一较合算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)设函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当函数有最大值且最大值大于时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sinx的图象向右平移 个单位后得到函数y=g(x)的图象,则函数y=f(x)+g(x)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,若存在实数,使得对于任意的,都有,则称数列为“数列”( )

A. 是等差数列,且首项,则数列是“数列”

B. 是等差数列,且公差,则数列是“数列”

C. 是等比数列,也是“数列”,则数列的公比满足

D. 是等比数列,且公比满足,则数列是“数列”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b∈R.若直线l:ax+y﹣7=0在矩阵A= 对应的变换作用下,得到的直线为l′:9x+y﹣91=0.求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l: (t为参数),与曲线C: (k为参数)交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数

(1)若,求不等式的解集;

(2)若对任意,均存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有 (n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:
设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn
(1)求p2的值;
(2)证明:pn

查看答案和解析>>

同步练习册答案