精英家教网 > 高中数学 > 题目详情
已知奇函数y=f(x)是定义在(-2,2)上的增函数,若f(m-1)+f(2m-1)<0,则m的取值范围是
-
1
2
<m<
2
3
-
1
2
<m<
2
3
分析:利用函数是奇函数,将f(m-1)+f(2m-1)<0,转化为f(m-1)<-f(2m-1)=f(1-2m),然后利用单调性求范围.
解答:解:由f(m-1)+f(2m-1)<0,得f(m-1)<-f(2m-1),
因为y=f(x)是奇函数,所以f(m-1)<-f(2m-1)=f(1-2m),
又因为y=f(x)是定义在(-2,2)上的增函数,
所以
-2<m-1<2
-2<2m-1<2
m-1<1-2m
,即
-1<m<3
-
1
2
<m<
3
2
m<
2
3
,所以-
1
2
<m<
2
3

即m的取值范围是-
1
2
<m<
2
3
点评:本题主要考查函数奇偶性和单调性的应用,要求熟练掌握函数性质的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数y=f(x)在区间(-∞,+∞)上是单调减函数.α,β,γ∈R,且α+β>0,β+γ>0,γ+α>0,则f(α)+f(β)+f(γ)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数y=f(x)在定义域(-1,1)上是减函数,满足f(1-a)+f(1-2a)<0,求a的取值范围
(0,
2
3
(0,
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数y=f(x)定义域是[-4,4],当-4≤x≤0时,y=f(x)=-x2-2x.
(1)求函数f(x)的解析式;
(2)求函数f(x)的值域;
(3)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数y=f(x)在区间(-∞,0]上的解析式为f(x)=x2+x,则切点横坐标为1的切线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数y=f(x)在定义域(-1,1)上是减函数,当0<x<1时f(x)=-x3-x2
①求函数f(x)的解析式;
②若有f(1-a)+f(1-2a)<0,求a的取值范围.

查看答案和解析>>

同步练习册答案