精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的奇函数fx),当x≥0时,fx)=,则关于x的函数Fx)=fx)-a(0<a<1,a为常数)的所有零点之和为______

【答案】-log2(1+a)(0<a<1,a为常数)

【解析】

利用指数函数、绝对值函数及其奇函数的性质画出图象,利用对称性即可得出关于x的函数F(x)=f(x)-a(0<a<1,a为常数)的所有零点之和.

解:定义在R上的奇函数fx),当x≥0时,fx

画出图象:

x(﹣1,0]时,fx)=﹣f(﹣x)=﹣(1﹣2x)=2x﹣1.

令2x﹣1=a,解得x=﹣log2(1+a).

则关于x的函数Fx)=fx)﹣a(0<a<1,a为常数)的所有零点之和

=﹣3×2+3×2﹣log2(1+a)=﹣log2(1+a).

故答案为:﹣log2(1+a)(0<a<1,a为常数).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司采用招考方式引进人才,规定必须在,三个测试中任意选取两个进行测试,若在这两个测试点都测试合格,则可参加面试,否则不被录用,已知考生在每测试个点试结果互不影响,若考生小李和小王起前来参加招考,小李在测试点测试合格的概率分别为,小王在上述三个测试点测试合格的概率都是.

(1)问小李选择哪两个测试点测试才能使得可以参加面试的可最大说明理由;

(2)假设小李选测试点进行测试,小王选择测试点进行测试,为两人在各测试点测试合格的测试点个数之和,机变的分布列及数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=a2x+2ax-1(a>1,且a为常数)在区间[-1,1]上的最大值为14.

(1)求fx)的表达式;

(2)求满足fx)=7x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数yfx)的定义域为R,并且满足fx+y)=fx)+fy),f)=1,当x>0时,fx)>0.

(1)求f(0)的值;

(2)判断函数的奇偶性;

(3)如果fx)+f(2+x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程是ρ=asinθ,直线l的参数方程是 (t为参数)
(1)若a=2,直线l与x轴的交点是M,N是圆C上一动点,求|MN|的最大值;
(2)直线l被圆C截得的弦长等于圆C的半径的 倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线 ,已知过点的直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线和直线的直角坐标方程.

(2)若 成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究性学习小组为了解学生每周用于体育锻炼时间的情况,在甲、乙两所学校随机抽取了各50名学生,做问卷调查,并作出如下频率分布直方图:

(1)根据直方图计算:两所学校被抽取到的学生每周用于体育锻炼时间的平均数;
(2)在这100名学生中,要从每周用于体育锻炼时间不低于10小时的学生中选出3人,该3人中来自乙学校的学生数记为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线 (a>0,b>0)的左右焦点分别为F1 , F2渐近线分别为l1 , l2 , 位于第一象限的点P在l1上,若l2⊥PF1 , l2∥PF2 , 则双曲线的离心率是(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆锥曲线C的极坐标方程为p2= ,定点A(0,﹣ ),F1 , F2是圆锥曲线C的左、右焦点,直线l经过点F1且平行于直线AF2
(1)求圆锥曲线C的直角坐标方程和直线l的参数方程;
(2)若直线l与圆锥曲线C交于M,N两点,求|F1M||F1N|.

查看答案和解析>>

同步练习册答案