精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若函数上是增函数,求实数的取值范围;

(2)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.

【答案】1;(2

【解析】

试题(1)把函数化简为,这个分段函数是由两个二次函数构成,右边是开口向上的抛物线的一部分,对称轴是,左边是开口向下的抛物线的一部分,对称轴是,为了使函数为增函数,因此有;(2)方程有三个不相等的实数根,就是函数的图象与直线有三个不同的交点,为此研究函数的单调性,由(1)知当时,上单调递增,不合题意,当时,上单调增,在上单调减,在上单调增,关于的方程有三个不相等的实数根的条件是, 由此有,因为,则有,由于题中是存在,故只要大于1且小于的最大值;当时同理讨论即可.

试题解析:(1

时,的对称轴为:

时,的对称轴为:

时,R上是增函数,

时,函数上是增函数;

2)方程的解即为方程的解.

时,函数上是增函数,

关于的方程不可能有三个不相等的实数根;

时,即

上单调增,在上单调减,在上单调增,

时,关于的方程有三个不相等的实数根;即

存在使得关于的方程有三个不相等的实数根,

又可证上单调增

时,即上单调增,在上单调减,在上单调增,

时,关于的方程有三个不相等的实数根;

,设

存在使得关于的方程有三个不相等的实数根,

,又可证上单调减

综上:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x> 时,f(x+ )=f(x﹣ ).则f(6)=(  )
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数的图象关于直线x=-对称,且.

(1)求实数ab的值;

(2)求函数在区间[-3,2]上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2-a)x-2(1+ln x)+a,若函数f(x)在区间上无零点,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为且点在椭圆上,为坐标原点.

(1)求椭圆的标准方程;

(2)设过定点的直线与椭圆交于不同的两点,且,求直线的斜率的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中a的值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数()在区间(0,)上至多取到两次最大值,且在区间()上不单调,则满足条件的的个数是(  )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

同步练习册答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�