精英家教网 > 高中数学 > 题目详情
16.已知命题p:x2>x是x>1的充分不必要条件;命题q:若数列{an}的前n项和Sn=n2,那么数列{an}是等差数列.则下列命题是真命题的是(  )
A.p∨(¬q)B.p∨qC.p∧qD.(¬p)∨(¬q)

分析 对于命题p:x2>x,解得x>1或x<0,即可判断出真假.命题q:若数列{an}的前n项和Sn=n2,则n=1时,a1=1;n≥2时,an=Sn-Sn-1,解出即可判断出真假.再利用复合命题真假的判定方法即可判断出结论.

解答 解:对于命题p:x2>x,解得x>1或x<0,因此x2>x是x>1的必要不充分条件,因此是假命题.
命题q:若数列{an}的前n项和Sn=n2,则n=1时,a1=1;n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,当n=1时也成立.∴an=2n-1,因此数列{an}是等差数列,首项为1,公差为2,因此是真命题.
∴只有P∨q是真命题.
故选:B.

点评 本题考查了简易逻辑的应用、不等式解法、等差数列的充要条件,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知关于x的不等式组$\left\{\begin{array}{l}{4(x-1)+2>3x}\\{x-1<\frac{6x+a}{7}}\end{array}\right.$,有且只有三个整数解,则a的取值范围是(  )
A.-2≤a≤-1B.-2≤a<-1C.-2<a≤-1D.-2<a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知α∈(0,π),tan($α-\frac{π}{4}$)=$\frac{1}{3}$,则sin($\frac{π}{4}+α$)=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列的前4项为1,-$\frac{1}{2}$,$\frac{1}{3}$,-$\frac{1}{4}$,则此数列的通项公式可以是(  )
A.(-1)n$\frac{1}{n}$B.(-1)n+1$\frac{1}{n}$C.(-1)n$\frac{1}{n+1}$D.(-1)n+1$\frac{1}{n-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b,c∈R,且a>b>c,则下列不等式一定成立的是(  )
A.$\frac{1}{a}$>$\frac{1}{b}$B.2a-b<1C.$\frac{a}{{c}^{2}+1}$>$\frac{b}{{c}^{2}+1}$D.lg(a-b)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某航运公司有6艘可运载30吨货物的A型货船与5艘可运载50吨货物的B型货船,现有每天至少运载900吨货物的任务,已知每艘货船每天往返的次数为A型货船4次和B型货船3次,每艘货船每天往返的成本费为A型货船160元,B型货船252元,那么,每天派出A型货船和B型货船各多少艘,公司所花的成本费最低?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图所示的程序框图,则输出s的值为(  )
A.21B.55C.91D.140

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=\sqrt{3}cos(2x-\frac{π}{3})(x∈R)$,下列结论错误的是(  )
A.函数f(x)的最小正周期为πB.函数f(x)图象关于点$(\frac{5π}{12},0)$对称
C.函数f(x)在区间$[0,\frac{π}{2}]$上是减函数D.函数f(x)的图象关于直线$x=\frac{π}{6}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(Ⅰ)求证:BM⊥平面ADM;
(Ⅱ)若点E是线段DB上的中点,求三棱锥E-ABM的体积V1与四棱锥D-ABCM的体积V2之比.

查看答案和解析>>

同步练习册答案