精英家教网 > 高中数学 > 题目详情

【题目】设全集U=R,集合A={x|﹣1<x<4},B={y|y=x+1,x∈A},(UA)∩(UB)=

【答案】(﹣∞,﹣1]∪[5,+∞)
【解析】解:全集U=R,集合A={x|﹣1<x<4}, B={y|y=x+1,x∈A}={y|0<y<5},
UA={x|x≤1或x≥4}=(﹣∞,﹣1]∪[4,+∞),
UB={y|y≤0或y≥5}=(﹣∞,0]∪[5,+∞);
∴(UA)∩(UB)=(﹣∞,﹣1]∪[5,+∞).
所以答案是:(﹣∞,﹣1]∪[5,+∞).
【考点精析】本题主要考查了交、并、补集的混合运算的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定集合A,若对于任意a,b∈A,有a+b∈A,且a﹣b∈A,则称集合A为闭集合,给出如下三个结论: ①集合A={﹣4,﹣2,0,2,4}为闭集合;
②集合A={n|n=3k,k∈Z}为闭集合;
③若集合A1 , A2为闭集合,则A1∪A2为闭集合;
其中正确结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U={1,2,3,4,5,6,7,8},A={x|x2﹣3x+2=0},B={x|1≤x≤5,x∈Z},C={x|2<x<9,x∈Z}.(以下请用列举法表示)
(1)求A集合与B集合
(2)求A∪(B∩C)
(3)求(UB)∪(UC).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线y=e5x+2在点(0,3)处的切线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=log0.3(﹣x2+4x)的单调递增区间是;单调递减区间是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数对序列P:(a1 , b1),(a2 , b2),…,(an , bn),记T1(P)=a1+b1 , Tk(P)=bk+max{Tk1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk1(P),a1+a2+…+ak}表示Tk1(P)和a1+a2+…+ak两个数中最大的数,
(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;
(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;
(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3,4},B={2,4,6},则A∩B的元素个数(
A.0个
B.2个
C.3个
D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】六个人从左到右排成一行,最右端只能排甲或乙,最左端不能排乙,则不同的排法种数共有(
A.192
B.216
C.240
D.288

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(
A.简单的随机抽样
B.按性别分层抽样
C.按学段分层抽样
D.系统抽样

查看答案和解析>>

同步练习册答案