精英家教网 > 高中数学 > 题目详情
已知命题P:?x∈R,ax2+2x+3>0.如果命题?P是真命题,那么a的范围是(  )
A、a<
1
3
B、0<a≤
1
3
C、a≤
1
3
D、a≥
1
3
分析:由命题¬p是真命题,我们可得命题p是假命题,我们可以先假定命题p是真命题,求出参数a的范围,再求出a的范围的补集,即可得到实数a的取值范围.
解答:解:因为命题¬p是真命题,
所以命题p是假命题,
而当命题p是真命题时,
就是不等式ax2+2x+3>0对一切x∈R恒成立,
这时应有
a>0
△=4-12a<0

解得a>
1
3

因此当命题p是假命题,
即命题¬p是真命题时实数a的取值范围是a≤
1
3

故选C.
点评:对命题“?x∈A,P(X)”的否定是:“?x∈A,?P(X)”;对命题“?x∈A,P(X)”的否定是:“?x∈A,?P(X)”,即对特称命题的否定是一个全称命题,对一个全称命题的否定是特称命题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:“?x∈R*,x>
1x
”,命题p的否定为命题q,则q是“
 
”;q的真假为
 
.(填“真”或“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论:
①已知命题p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0.则命题“p∧?q”是假命题;
②函数y=
|x|
x2+1
的最小值为
1
2
且它的图象关于y轴对称;
③“a>b”是“2a>2b”的充分不必要条件;
④在△ABC中,若sinAcosB=sinC,则△ABC中是直角三角形.
⑤若tanθ=2,则sin2θ=
4
5

其中正确命题的序号为
①④⑤
①④⑤
.(把你认为正确的命题序号填在横线处)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,cosx≤1,则?p命题是
?x∈R,cosx>1
?x∈R,cosx>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:
①命题“p∧q”是真命题;
②命题“p∧¬q”是假命题;
③命题“¬p∨q”是真命题;
④命题“¬p∨¬q”是假命题.
其中正确的是
①②③④
①②③④
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,2x<3x;命题q:?x∈R,2x≥1+x2,则下列命题中为真命题的是(  )

查看答案和解析>>

同步练习册答案