精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2 cos( ﹣θ)
(1)求曲线C的直角坐标方程;
(2)已知直线l过点P(1,0)且与曲线C交于A,B两点,若|PA|+|PB|= ,求直线l的倾斜角α.

【答案】
(1)解:曲线C的极坐标方程为ρ=2 cos( ﹣θ),即ρ2=2(ρcosθ+ρsinθ).

∴曲线C的直角坐标方程为x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2;


(2)解:直线l过点P(1,0),参数方程为 (t为参数),代入圆的方程,可得t2﹣2tsinα﹣1=0,

设A、B两点对应的参数分别为t1、t2,则t1+t2=2sinα,t1t2=﹣1.

∴|PA|+|PB|=|t1 ﹣t2|= = ,∴sinα= (舍去负数),∴α=


【解析】【(1)把极坐标方程利用x=ρcosθ、y=ρsinθ,化为直角坐标方程.(2)直线l过点P(1,0),参数方程为 (t为参数),代入圆的方程,利用韦达定理,根据|PA|+|PB|= ,求直线l的倾斜角α.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.
(Ⅰ)求a的值;
(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;
(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取3人,用X表示身高在180cm以上的男生人数,求随机变量X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数f(x)= 是奇函数,命题q:函数g(x)=x3﹣x2在区间(0,+∞)上单调递增.则下列命题中为真命题的是(
A.p∨q
B.p∧q
C.¬p∧q
D.¬p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,设抛物线E:y2=2px(p>0)的焦点为F,准线为直线l,点A、B在直线l上,点M为抛物线E第一象限上的点,△ABM是边长为 的等边三角形,直线MF的倾斜角为60°.
(1)求抛物线E的方程;
(2)如图,直线m过点F交抛物线E于C、D两点,Q(2,0),直线CQ、DQ分别交抛物线E于G、H两点,设直线CD、GH的斜率分别为k1、k2 , 求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆M: +y2=1,圆C:x2+y2=6﹣a2在第一象限有公共点P,设圆C在点P处的切线斜率为k1 , 椭圆M在点P处的切线斜率为k2 , 则 的取值范围为(
A.(1,6)
B.(1,5)
C.(3,6)
D.(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AD与BC是四面体ABCD中相互垂直的棱,若AD=BC=6,且∠ABD=∠ACD=60°,则四面体ABCD的体积的最大值是(
A.
B.
C.18
D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数,0≤α<π),以坐标原点O为极点,x轴的正半轴为极轴,并取相同的长度单位,建立极坐标系.曲线C1:p=1.
(1)若直线l与曲线C1相交于点A,B,点M(1,1),证明:|MA||MB|为定值;
(2)将曲线C1上的任意点(x,y)作伸缩变换 后,得到曲线C2上的点(x',y'),求曲线C2的内接矩形ABCD周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出四种说法: ①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;
②命题P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③设随机变量X服从正态分布N(0,1),若P(x>1)=p,则P(﹣1<X<0)= ﹣p
④回归直线一定过样本点的中心( ).
其中正确的说法有(请将你认为正确的说法的序号全部填写在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex(3x﹣1)﹣ax+a,其中a<1,若有且只有一个整数x0使得f(x0)≤0,则a的取值范
围是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案