精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,当时,求直线斜率的取值范围.

【答案】(1) (2)

【解析】试题分析:(Ⅰ)运用椭圆的离心率公式和直线和圆相切的条件: 可得 ,结合 的关系,可得进而得到椭圆方程;
(Ⅱ)设过点 的直线为 ,代入椭圆方程 可得的方程,运用判别式大于0和韦达定理,以及弦长公式,化简整理解不等式即可得到所求直线的斜率的范围.

试题解析:(()由题意可得e==

x2+y2=b2的圆与直线x﹣y+=0相切,可得

=b,即b=1,

即为a2﹣c2=1,

解得a=,b=1,

即有椭圆方程为+y2=1;

(Ⅱ)设过点M(2,0)的直线为y=k(x﹣2),

代入椭圆方程x2+2y2=2,可得

(1+2k2)x2﹣8k2x+8k2﹣2=0,

可得△=64k4﹣4(1+2k2)(8k2﹣2)0,

即为﹣k

A(x1,y1),B(x2,y2),

即有x1+x2=,x1x2=

由弦长公式可得|AB|=

==

由题意可得

化简可得56k4+38k2﹣130,

解得k2,即有kk

综上可得直线的斜率的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知α,β∈( ,π),sin(α+β)=﹣ ,sin(β﹣ )= ,则cos(α+ )=(
A.
B.
C.﹣
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为

(Ⅰ)分别求曲线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)设直线交曲线 两点,交曲线 两点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;

(3)现用分层抽样的方法从3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定两个命题,P:对任意实数x都有ax2+ax+10恒成立;Q:关于x的方程x2﹣x+a=0有实数根;如果PQ中有且仅有一个为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为 ,数列的通项公式为

(1)求数列的通项公式;

(2)设,数列的前项和为

①求

②若,求数列的最小项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率等于 .现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了提高产品的年产量,某企业拟在2013年进行技术改革,经调查测算,产品当年的产量x万件与投入技术改革费用m万元(m≥0)满足x=3﹣ (k为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2013年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产均能销售出去,厂家将每件产品的销售价格定为每件产品生产成本的1.5倍(生产成本包括固定投入和再投入两部分资金)
(1)试确定k的值,并将2013年该产品的利润y万元表示为技术改革费用m万元的函数(利润=销售金额﹣生产成本﹣技术改革费用);
(2)该企业2013年的技术改革费用投入多少万元时,厂家的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1的棱AA1=2,求:

(1)求异面直线A1D与AC所成角的大小;
(2)求四面体A1﹣DCA的体积.

查看答案和解析>>

同步练习册答案