精英家教网 > 高中数学 > 题目详情
14.在正项数列{an}中,a1=$\frac{1}{3}$,an+1=an+($\frac{{a}_{n}}{n}$)2(n∈N*
(1)判断数列{an}的单调性,并证明你的结论;
(2)求证:对n∈N*都有:$\frac{1}{3}$≤an<1.

分析 (1)数列{an}为单调递增数列,作差证明即可;
(2)易知$\frac{1}{3}$≤an,再利用放缩法证明an<1即可.

解答 解:(1)数列{an}为单调递增数列,证明如下,
∵an+1=an+($\frac{{a}_{n}}{n}$)2
∴an+1-an=($\frac{{a}_{n}}{n}$)2>0,
∴数列{an}为单调递增数列;
(2)证明:∵数列{an}为单调递增数列,
又∵a1=$\frac{1}{3}$,
∴$\frac{1}{3}$≤an
①a1=$\frac{1}{3}$<1,
②a2=$\frac{1}{3}$+$\frac{1}{9}$=$\frac{4}{9}$<1,
③a3=$\frac{4}{9}$+$\frac{4}{81}$=$\frac{40}{81}$<1,
④假设an<1,
则an+1=a1+$\frac{{(a}_{1})^{2}}{{1}^{2}}$+$\frac{({a}_{2})^{2}}{{2}^{2}}$+…+$\frac{({a}_{n-1})^{2}}{(n-1)^{2}}$+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$
=a1+$\frac{1}{9}$+$\frac{4}{81}$+…+$\frac{({a}_{n-1})^{2}}{(n-1)^{2}}$+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$
<$\frac{1}{3}$+$\frac{1}{9}$+$\frac{4}{81}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{(n-1)^{2}}$+$\frac{1}{{n}^{2}}$
<$\frac{40}{81}$+$\frac{1}{2•3}$+…+$\frac{1}{(n-2)(n-1)}$+$\frac{1}{n(n-1)}$
<$\frac{40}{81}$+$\frac{1}{2}$-$\frac{1}{n}$<1;
故$\frac{1}{3}$≤an<1.

点评 本题考查了数列的单调性的判断与证明,同时考查了放缩法与裂项求和法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn.已知a1=1,an+1=2Sn+1,n∈N*
(1)写出a2,a3的值,并求数列{an}的通项公式;
(2)若数列{bn}满足b1=0,bn-bn-1=log3an(n≥2),求数列{bn}的通项公式;
(3)记Tn为数列{nan}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2).
(1)求函数f(x)的解析式; 
(2)求函数f(x)在区间[-3π,3π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=(x-2)lnx-ax+1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是(  )
A.(0,$\frac{1+ln3}{3}$)B.($\frac{1}{2}$,$\frac{1+ln3}{3}$]C.($\frac{1+ln3}{3}$,1)D.[$\frac{1+ln3}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.有下列命题
(1)函数f(x)=4sin(2x+$\frac{π}{3}$)(x∈R)的表达式可改写为y=4cos(2x-$\frac{π}{6}$);
(2)函数y=cos(sinx)(x∈R)为偶函数;
(3)函数y=sin|x|是周期函数,且周期为2π;
(4)若cosα=cosβ,则α-β=2kπ,k∈Z;
(5)设函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$的最大值为M,最小值为m,则M+m=4,其中正确的命题序号是(1)(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率$\frac{\sqrt{6}}{2}$.
(1)求双曲线C的渐近线方程;
(2)若它的一个顶点到较近焦点的距离为$\sqrt{3}$-$\sqrt{2}$,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数a1,a2,a3,a4,求x的值,使得函数f(x)=(x-a12+(x-a22+(x-a32+(x-a42的值最小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一家电信公司在某大学对学生每月的手机话费进行抽样调查,随机抽取了100名学生,将他们的手机话费情况进行统计分析,绘制成频率分布直方图(如图所示).如果该校有大学生10000人,请估计该校每月手机话费在[50,70)的学生人数是3100.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\sqrt{2sin(2x-\frac{π}{3})-1}$+lg(25-x2)定义域为(-5,-$\frac{17π}{12}$]∪[-$\frac{3π}{4}$,-$\frac{5π}{12}$]∪[$\frac{π}{4}$,$\frac{7π}{12}$]∪[$\frac{5π}{4}$,$\frac{19π}{12}$].

查看答案和解析>>

同步练习册答案