精英家教网 > 高中数学 > 题目详情

【题目】已知动点C到点F(1,0)的距离比到直线x=﹣2的距离小1,动点C的轨迹为E.
(1)求曲线E的方程;
(2)若直线l:y=kx+m(km<0)与曲线E相交于A,B两个不同点,且 ,证明:直线l经过一个定点.

【答案】
(1)解:由题意可得动点C到点F(1,0)的距离等于到直线x=﹣1的距离,

∴曲线E是以点(1,0)为焦点,直线x=﹣1为准线的抛物线,

设其方程为y2=2px(p>0),∴ ,∴p=2,

∴动点C的轨迹E的方程为y2=4x


(2)证明:设A(x1,y1),B(x2,y2),由 ,整理得k2x2+(2km﹣4)x+m2=0,

∴x1x2+y1y2= =

∴m2+4km﹣5k2=0,∴m=k或m=﹣5k,又km<0,m=k舍去,m=﹣5k,满足△=16(1﹣km)>0,

则直线l的方程为y=k(x﹣5),

∴直线l必经过定点(5,0)


【解析】(1)根据抛物线的定义,即可求得曲线E的方程;(2)设直线l的方程,代入抛物线方程,利用韦达定理及向量数量积的坐标运算,求得m=﹣5k,即可求得直线l的方程,则直线l必经过定点(5,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个样本a,3,5,7的平均数是b,且a,b分别是数列{2n2}(n∈N*)的第2项和第4项,则这个样本的方差是(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,则该程序运行后输出的S的值为(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a和b是任意非零实数.
(1)求 的最小值.
(2)若不等式|2a+b|+|2a﹣b|≥|a|(|2+x|+|2﹣x|)恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现采取随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示集中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数: 7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该运动员射击四次至少击中三次的概率为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1 , AA1=AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的点,AB1 , DF交于点E,且AB1⊥DF,则下列结论中不正确的是(
A.CE与BC1异面且垂直
B.AB1⊥C1F
C.△C1DF是直角三角形
D.DF的长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两个班学生中分别抽取8名和6名测试他们的数学成绩与英语成绩(单位:分),用表示(m,n).下面是乙班6名学生的测试分数:A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(134,132),当学生的数学、英语成绩满足m≥135,且n≥130时,该学生定为优秀学生.
(1)已知甲班共有80名学生,用上述样本数据估计乙班优秀生的数量;
(2)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名优秀生的概率;
(3)从乙班抽出的上述6名学生中随机抽取2名,其中优秀生数记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足: + +…+ = (n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=anan+1 , Sn为数列{bn}的前n项和,对于任意的正整数n,Sn>2λ﹣ 恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1Cl中,M,N分别为CC1 , A1B1的中点.
(I)证明:直线MN∥平面CAB1
(II)BA=BC=BB1 , CA=CB1 , CA⊥CB1 , ∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(锐角)的余弦值.

查看答案和解析>>

同步练习册答案