精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC满足| |=3,| |=4,O是△ABC所在平面内一点,满足| |=| |=| |,且 + (λ∈R),则cos∠BAC=

【答案】
【解析】解:由| |=| |=| |,可得O是△ABC的外心. ∵ + (λ∈R),∴ =(λ﹣1) +
=(λ﹣1) + =(1﹣λ) + )= + ).
设AC的中点为D,则 = 2 =(1﹣λ) ,即B、O、D三点共线.
由于BD⊥AC,∴cos∠BAC= =
当λ=0时, = ,此时AB⊥BC,cos∠BAC= =
所以答案是:

【考点精析】通过灵活运用数量积表示两个向量的夹角,掌握设都是非零向量,的夹角,则即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形, ,点E在棱PB上.

(Ⅰ)求证:平面

(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)在等差数列中,已知,前项和为,且,求当取何值时, 取得最大值,并求出它的最大值;

(2)已知数列的通项公式是,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.

(1)证明:平面PQC⊥平面DCQ
(2)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cosα= ,cos(α+β)=﹣ ,且α,β∈(0, ),则cos(α﹣β)的值等于(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2(x+ ),g(x)=1+ sin2x.
(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值.
(2)设函数h(x)=f(x)+g(x),若不等式|h(x)﹣m|≤1在[﹣ ]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为.点在椭圆上,直线过坐标原点,若 .

(1)求椭圆的方程;

(2) 设椭圆在点处的切线记为直线,点上的射影分别为,过的垂线交轴于点,试问是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(2,0),B(0,2),C(cosα,sinα).
(1)若 ,且α∈(0,π),求角α的值;
(2)若 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.设D,E分别为PA,AC中点.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求证:BC⊥平面PAB;
(Ⅲ)试问在线段AB上是否存在点F,使得过三点 D,E,F的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案