精英家教网 > 高中数学 > 题目详情
8.当x∈R,|x|<1时,有如下表述式:1+x+x2+…+xn+…=$\frac{1}{1-{x}^{n}}$,
两边同时积分得:
${∫}_{0}^{\frac{1}{2}}$1dx+${∫}_{0}^{\frac{1}{2}}$xdx+${∫}_{0}^{\frac{1}{2}}$x2dx+…+${∫}_{0}^{\frac{1}{2}}$xndx+…=${∫}_{0}^{\frac{1}{2}}$$\frac{1}{1-x}$dx
从而得到如下等式:1×$\frac{1}{3}$+$\frac{1}{2}$×($\frac{1}{3}$)2+$\frac{1}{3}$×($\frac{1}{3}$)3+…+$\frac{1}{n+1}$×($\frac{1}{3}$)n+1+…=ln3-ln2.
请根据以上材料所蕴含的数学思想方法,计算:
Cn0×$\frac{1}{3}$+$\frac{1}{2}$Cn1×($\frac{1}{3}$)2+$\frac{1}{3}$Cn2×($\frac{1}{3}$)3+…+$\frac{1}{n+1}$Cnn×($\frac{1}{3}$)n+1=$\frac{1}{n+1}$$[(\frac{4}{3})^{n+1}-1]$.

分析 根据二项式定理得Cn0+Cn1x+Cn2x2+…+Cnnxn=(1+x)n,f($\frac{1}{3}$)=${∫}_{0}^{\frac{1}{3}}$f′(x)dx=$\frac{1}{n+1}(1+x)^{n+1}{|}_{0}^{\frac{1}{3}}$,整理即可得到结论.

解答 解:设f(x)=Cn0x+$\frac{1}{2}$Cn1x2+$\frac{1}{3}$Cn2x3+…+$\frac{1}{n+1}$Cnnxn+1
∴f′(x)=Cn0+Cn1x+Cn2x2+…+Cnnxn=(1+x)n
f($\frac{1}{3}$)=${∫}_{0}^{\frac{1}{3}}$f′(x)dx=$\frac{1}{n+1}(1+x)^{n+1}{|}_{0}^{\frac{1}{3}}$=$\frac{1}{n+1}$$[(\frac{4}{3})^{n+1}-1]$,
故答案为:$\frac{1}{n+1}$$[(\frac{4}{3})^{n+1}-1]$.

点评 本题主要考查二项式定理的应用.是道好题,解决问题的关键在于利用Cn0+Cn1x+Cn2x2+…+Cnnxn=(1+x)n

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.光线l1从点M(-1,3)射到x轴上,在点P(1,0)处被x轴反射,得到光线l2,再经直线x+y-4=0反射,得到光线l3,求l2和l3的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.矩形ABCD中,|AB|=4,|BC|=3,$\overrightarrow{AE}=\frac{1}{3}\overrightarrow{AD}$,$\overrightarrow{CF}=\frac{1}{2}\overrightarrow{CD}$,若向量$\overrightarrow{BD}=x\overrightarrow{BE}+y\overrightarrow{BF}$,则x+y=$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2c(c>0),左焦点为F,点M的坐标为(-2c,0).若椭圆E上存在点P,使得PM=$\sqrt{2}$PF,则椭圆E离心率的取值范围是[$\frac{\sqrt{3}}{3},\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)为定义在R上的可导函数,且为偶函数,x≠0时,xf′(x)>0恒成立,则(  )
A.f(1)<f(-2)<f(3)B.f(-2)<f(1)<f(3)C.f(3)<f(-2)<f(1)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知矩阵M=$[{\begin{array}{l}1&0\\ 0&{\frac{1}{3}}\end{array}}]$
(1)求矩阵M的逆矩阵M-1
(2)求曲线|x|+|y|=1在矩阵M=$[{\begin{array}{l}1&0\\ 0&{\frac{1}{3}}\end{array}}]$对应的变换作用下得到的曲线C方程;
(3)求曲线C所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在Rt△AOB中,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,|$\overrightarrow{OA}$|=$\sqrt{5}$,|$\overrightarrow{OB}$|=2$\sqrt{5}$,AB边上的高线为OD,点E位于线段OD上,若$\overrightarrow{OE}$•$\overrightarrow{EA}$=$\frac{3}{4}$,则向量$\overrightarrow{EA}$在向量$\overrightarrow{OD}$上的投影为(  )
A.$\frac{3}{2}$B.1C.$\frac{1}{2}$或$\frac{3}{2}$D.1或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.弹簧所受的压缩力F(单位:牛)与缩短的距离L(单位:米)按胡克定律F=KL计算,如果100N的力能使弹簧压缩10cm,那么把弹簧从平衡位置压缩到20cm(在弹性限度内),所做的功为(  )
A.20( J)B.200( J)C.10( J)D.5( J)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=xα的图象经过点A($\frac{1}{4}$,$\frac{1}{2}$),则它在点A处的切线方程是(  )
A.2x+y=0B.2x-y=0C.4x-4y+1=0D.4x+4y+1=0

查看答案和解析>>

同步练习册答案