精英家教网 > 高中数学 > 题目详情

【题目】已知函数,且存在不同的实数x1x2x3,使得fx1=fx2=fx3),则x1x2x3的取值范围是(  )

A. B. C. D.

【答案】A

【解析】

作出yfx)的函数图象,设x1x2x3fx1)=fx2)=fx3)=t,1<t<2,求得x1x2x3,构造函数gt)=(t﹣1)(2+log2t),1<t<2,求得导数,判断单调性,即可得到所求范围.

函数的图象如图所示:

x1x2x3

又当x[2,+∞)时,fx)=2x﹣2是增函数,

x=3时,fx)=2,

fx1)=fx2)=fx3)=t,1<t<2,

即有﹣x12+2x1+1=﹣x22+2x2+1=t

x1x2x3=(1)(1)(2+log2t

=(t﹣1)(2+log2t),

gt)=(t﹣1)(2+log2t),1<t<2,

可得g′(t)=2+log2t0,即gt)在(1,2)递增,又g1)=0,g2)=3,

可得gt)的范围是(0,3).

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中错误的是

A. 若命题为真命题, 命题为假命题, 则命题“”为真命题

B. 命题“若,则”为真命题

C. 对于命题,则

D. ”是“”的充分不必要条件个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数,(

)讨论函数的单调区间;

)设函数在区间内是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,已知

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前项和。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现行的个税法修正案规定:个税免征额由原来的2000元提高到3500元,并给出了新的个人所得税税率表:

全月应纳税所得额

税率

不超过1500元的部分

3%

超过1500元至4500元的部分

10%

超过4500元至9000元的部分

20%

超过9000元至35000元的部分

25%

……

例如某人的月工资收入为5000元,那么他应纳个人所得税为:(元).

(Ⅰ)若甲的月工资收入为6000元,求甲应纳的个人收的税;

(Ⅱ)设乙的月工资收入为元,应纳个人所得税为元,求关于的函数;

(Ⅲ)若丙某月应纳的个人所得税为1000元,给出丙的月工资收入.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在二项式的展开式中,

1)若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(最后结果用算式表达,不用计算出数值)

2)若展开式前三项的二项式系数的和等于79,求展开式中系数最大的项.(最后结果用算式表达,不用计算出数值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号,某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

试销单价x(元)

4

5

6

7

8

9

产品销量y(件)

90

84

83

80

75

68

1)已知变量xy具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程

2)用表示用(1)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数的分布列和数学期望.

(参考公式:;参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为各局比赛结果相互独立.则甲在4局以内(含4局)赢得比赛的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】水果的价格会受到需求量和天气的影响.某采购员定期向某批发商购进某种水果,每箱水果的价格会在当日市场价的基础上进行优惠,购买量越大优惠幅度越大,采购员通过对以往的10组数据进行研究,发现可采用来作为价格的优惠部分(单位:元/箱)与购买量(单位:箱)之间的回归方程,整理相关数据得到下表(表中):

(1)根据参考数据,

①建立关于的回归方程;

②若当日该种水果的市场价为200元/箱,估算购买100箱该种水果所需的金额(精确到0.1元).

(2)在样本中任取一点,若它在回归曲线上或上方,则称该点为高效点.已知这10个样本点中,高效点有4个,现从这10个点中任取3个点,设取到高效点的个数为,求的数学期望.

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为,参考数据:

查看答案和解析>>

同步练习册答案