精英家教网 > 高中数学 > 题目详情

【题目】以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数).

1)求曲线的参数方程与直线的普通方程;

2)设点过为曲线上的动点,点和点为直线上的点,且满足为等边三角形,求边长的取值范围.

【答案】1为参数,),;(2

【解析】

1)利用公式即可容易化简曲线的方程为直角坐标方程,再写出其参数方程即可;利用消参即可容易求得直线的普通方程;

2)设出的坐标的参数形式,将问题转化为求点到直线距离的范围问题,利用三角函数的值域求解即可容易求得结果.

1)曲线的极坐标方程为

故可得,则

整理得,也即

,则可得

故其参数方程为为参数,);

又直线的参数方程为

故可得其普通方程为.

2)不妨设点的坐标为

则点到直线的距离

容易知在区间的值域为

故可得.

则三角形的边长为,故其范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD是正方形,AE平面ABCDPDAEPDAD2EA2GFH分别为BEBPPC的中点.

1)求证:平面ABE平面GHF

2)求直线GH与平面PBC所成的角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的四个顶点都在球的表面上,平面,则球的半径为______;若的中点,过点作球的截面,则截面面积的最小值是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】嫦娥四号任务经过探月工程重大专项领导小组审议,通过并且正式开始实施,如图所示.假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点变轨进入以月球球心为一个焦点的椭圆轨道绕月飞行,之后卫星在点第二次变轨进入仍以为一个焦点的椭圆轨道绕月飞行.若用分别表示椭圆轨道的焦距,用分别表示椭圆轨道的长轴长,则下列关系中正确的是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如下表),下图是统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是(

A.除了综合实践外,其它三个领域的条目数都随着学段的升高而增加,尤其图象几何在第三学段增加较多,约是第二学段的.

B.所有主题中,三个学段的总和图形几何条目数最多,占50%,综合实践最少,约占4% .

C.第一、二学段数与代数条目数最多,第三学段图形几何条目数最多.

D.数与代数条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形几何条目数,百分比都随学段的增长而增长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查防疫期间学生居家每天锻炼时间情况,从高一、高二年级学生中分别随机抽取100人,由调查结果得到如下的频率分布直方图:

(Ⅰ)写出频率分布直方图(高一)中的值;记高一、高二学生100人锻炼时间的样本的方差分别为,试比较的大小(只要求写出结论);

(Ⅱ)估计在高一、高二学生中各随机抽取1人,恰有一人的锻炼时间大于20分钟的概率;

(Ⅲ)由频率分布直方图可以认为,高二学生锻炼时间服从正态分布.其中近似为样本平均数近似为样本方差,且每名学生锻炼时间相互独立,设表示从高二学生中随机抽取10人,其锻炼时间位于的人数,求的数学期望.

注:①同一组数据用该区间的中点值作代表,计算得

②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某初中学校学生睡眠状况,在该校全体学生中随机抽取了容量为120的样本,统计睡眠时间(单位:.经统计,时间均在区间内,将其按分成6组,制成如图所示的频率分布直方图:

1)世界卫生组织表明,该年龄段的学生睡眠时间服从正态分布,其标准为:该年龄段的学生睡眠时间的平均值,方差.根据原则,用样本估计总体,判断该初中学校学生睡眠时间在区间上是否达标?

(参考公式:

2)若规定睡眠时间不低于为优质睡眠.已知所抽取的这120名学生中,男、女睡眠质量人数如下列联表所示:

优质睡眠

非优质睡眠

合计

60

19

合计

将列联表数据补充完整,并判断是否有的把握认为优质睡眠与性别有关系,并说明理由;

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 经过点P(2,1),且离心率为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设O为坐标原点,在椭圆短轴上有两点MN满足,直线PM、PN分别交椭圆于A,B.探求直线AB是否过定点,如果经过定点请求出定点的坐标,如果不经过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的奇数项是公差为的等差数列,偶数项是公差为的等差数列, 是数列的前项和,

(1)若,求

(2)已知,且对任意的,有恒成立,求证:数列是等差数列;

(3)若,且存在正整数,使得,求当最大时,数列的通项公式.

查看答案和解析>>

同步练习册答案