精英家教网 > 高中数学 > 题目详情
下列说法正确的是(  )
A.有一个面是多边形,其余各面是三角形的多面体是棱锥
B.有两个面互相平行,其余各面均为梯形的多面体是棱台
C.有两个面互相平行,其余各面均为平行四边形的多面体是棱柱
D.棱柱的两个底面互相平行,侧面均为平行四边形
正二十面体有一个面是多边形,
其余各面是三角形的多面体,但是它不是棱锥,故A错误;
有两个面互相平行,其余各面均为梯形的多面体不能保证各条侧棱相交于一点,
所以不一定是棱台,故B不正确;
如图所示的图形有两个面互相平行,其余各面均为平行四边形,
但是它不是棱柱,故C不正确;
由棱柱的性质知:棱柱的两个底面互相平行,侧面均为平行四边形,故D正确.
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

对于曲线C:
x2
4-k
+
y2
k-1
=1
,给出下面四个命题
①当1<k<4时,曲线C表示椭圆
②若曲线C表示双曲线,则k<1或k>4
③若曲线C表示焦点在x轴上的椭圆,则1<k<
5
2

其中所有正确命题的序号为(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题中正确的命题是______.(填序号)
①直线l上有两点到平面α距离相等,则lα;
②平面α内不在同一直线上三点到平面β的距离相等,则αβ;
③垂直于同一直线的两个平面平行;
④平行于同一直线的两个平面平行;
⑤若a,b为异面直线,a?α,bα,b?β,aβ,则αβ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方形ABCD,沿对角线BD折成直二面角后不会成立的结论是(  )
A.AC⊥BD
B.△ADC为等边三角形
C.AB、CD所成角为60°
D.AB与平面BCD所成角为60°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列选项错误的是(  )
A.p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的充要条件
B.“x>2”是“x2-3x+2>0”的充分不必要条件
C.命题P:存在x0∈R,使得x02+x0+1<0,则
P
:任意x∈R,都有x2+x+1≥0
D.若P且q为真命题,则p、q均为真命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列有关命题的说法正确的是(  )
A.命题“?x∈R,x2+x+2<0”的否定是“?x∈R,x2+x+2≥0,”
B.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
C.命题“若x=y,则x2=y2”的逆否命题是假命题
D.已知m,n∈N,命题“若m+n是奇数,则m,n这两个数中一个为奇数,另一个为偶数”的逆命题为假命题.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题p:关于x的方程ax-1=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p或q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题p:x2-5x-6≤0;命题q:-x2+2x+8≤0.若“p∨q”为真命题且“p∧q”为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题中:①、若m>0,则方程x2-x+m=0有实根.②、若x>1,y>1,则x+y>2的逆命题.③、对任意的x∈{x|-2<x<4},|x-2|<3的否定形式.④、△>0是一元二次方程ax2+bx+c=0有一正根和一负根的充要条件.是真命题的有______.

查看答案和解析>>

同步练习册答案