【题目】
已知中心在原点,顶点A1、A2在x轴上,其渐近线方程是,双曲线过点
(1)求双曲线方程
(2)动直线经过的重心G,与双曲线交于不同的两点M、N,问:是否存在直线,使G平分线段MN,证明你的结论
【答案】(1)所求双曲线方程为="1" ;
(2)所求直线不存在.
【解析】
本试题主要是考查了双曲线方程的求解,已知直线与双曲线的位置关系的综合运用.
(1)利用已知中的渐近线方程是,双曲线过点
那么设出双曲线的标准方程,然后代入点和a,b的关系得到求解.
(2)假设存在直线,使G(2,2)平分线段MN,那么利用对称性,分别设出点的坐标,那么联立方程组,可知斜率,得到直线的方程,从而验证是否存在.
(1)如图,设双曲线方程为=1 …………1分
由已知得………………………………………3分
解得…………………………………………………5分
所以所求双曲线方程为="1" ……………………6分
(2)P、A1、A2的坐标依次为(6,6)、(3,0)、(-3,0),
∴其重心G的坐标为(2,2)…………………………………………………………8分
假设存在直线,使G(2,2)平分线段MN,
设M(x1,y1),N(x2,y2) 则有
,∴kl=……………………10分
∴l的方程为y=(x-2)+2,12分
由,消去y,整理得x2-4x+28="0"
∵Δ=16-4×28<0,∴所求直线不存在…………………………………………14分
科目:高中数学 来源: 题型:
【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求频率分布直方图中a的值;
(2)求这50名问卷评分数据的中位数;
(3)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左、右焦点分别为,,焦距为6.
(1)求椭圆的方程.
(2)过椭圆左顶点的两条斜率之积为的直线分别与椭圆交于点.试问直线是否过某定点?若过,求出该点的坐标;若不过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在中,分别是上的点,且,将沿折起到的位置,使,如图2.
(1)求证:平面;
(2)若是的中点,求与平面所成角的大小;
(3)线段上是否存在点,使平面与平面垂直?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汕头某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配,每辆甲型货车的运输费用是400元,可装空调20台,每辆乙型货车的运输费用是300元,可装空调10台,若每辆车至多运一次,则企业所花的最少运费为( )
A. 2000元B. 2200元C. 2400元D. 2800元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 : ( )的离心率 ,直线 被以椭圆 的短轴为直径的圆截得的弦长为 .
(1)求椭圆 的方程;
(2)过点 的直线 交椭圆于 , 两个不同的点,且 ,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:,当',时, (其中表示,,…,中的最大项),有以下结论:
① 若数列是常数列,则;
② 若数列是公差的等差数列,则;
③ 若数列是公比为的等比数列,则:
④ 若存在正整数,对任意,都有,则,是数列的最大项.
其中正确结论的序号是____(写出所有正确结论的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com