精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式(a为非零常数),定义:f1(x)=f(x),fk+1(x)=f[fk(x)],k∈N*,例如:f2(x)=f[f(x)],f3(x)=f[f2(x)],…
(1)当a=2时,求数学公式的值;
(2)若对于任意x≠-1,等式f2(x)=x恒成立,求a的值;
(3)当a确定后,fk(x),k∈N*的值都由x的值确定.当a=2时,试通过对fk(x)的探究,写出一个使得集合{fk(x)}为有限集的真命题(不必证明).

解:(1)当a=2时,f(x)=
∴f2(1)=f[f(1)]=f(1)=1
无意义
(2)若对于任意x≠-1,等式f2(x)=x恒成立
∴f2(x)===x恒成立即a2=(a+1)x+1恒成立
∴a=-1
(3)结合(1)满足条件的真命题为:函数f(x)=,若x=-,则集合{fk(x)}为有限集.
分析:(1)当a=2时,f(x)=,然后根据fk+1(x)=f[fk(x)]可求出的值;
(2)若对于任意x≠-1,等式f2(x)=x恒成立,将f2(x)的解析式求出代入可转化成a2=(a+1)x+1恒成立,从而求出a的值;
(3)结合(1)由a=2得到函数f(x)=,因为集合{fk(x)}为有限集,可以令x=-得到即可.
点评:本题主要考查了学生会利用函数的递推式解决数学问题,以及恒成立问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案