精英家教网 > 高中数学 > 题目详情

【题目】从某学校高三年级共800名男生中随机抽取50名学生作为样本测量身高.测量发现被测学生身高全部介于155cm195cm之间,将测量结果按如下方式分成八组:第一组;第二组;第八组.下图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组与第八组人数之和为第七组的两倍.

1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;

2)求第六组和第七组的频率并补充完整频率分布直方图.

【答案】1144人(2)频率分别为0.080.06,见解析

【解析】

1)由直方图求出前五组频率为0.82,后三组频率为,由此能求出这所学校高三男生身高在以上(含的人数.

2)由频率分布直方图得第八组频率为0.04,人数为2人,设第六组人数为,则第七组人数为,再由,得,即第六组人数为4人,第七组人数为3人,频率分别为0.080.06.由此能求出结果.

1)由图知前5组频率为

后三组频率为.

全校高三男生身高在180cm以上的人有.

2)如图知第八组频率为,人数为.

设第六组人数为m,后三组共9.

第七组人数为.

.

即第六组4人,第七组3人,其频率分别为0.080.06,高度分别为0.0160.012,如图所示.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC中,已知AB=2,AC=3,BC=

(1)求角A的大小;

(2)求cos(B﹣C)的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,且Sn=2an﹣2(nN*),数列{bn}满足bn=(2n﹣1)an,数列{bn}的前n项和Tn(nN*),

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和Tn

(3)求 的最小值以及取得最小值时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若不等式的解集为,求的取值范围;

(2)当时,解不等式

(3)若不等式的解集为,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产万件,需另投入流动成本万元,当年产量小于万件时,(万元);当年产量不小于7万件时,(万元).已知每件产品售价为6元,假若该同学生产的商品当年能全部售完.

1)写出年利润(万年)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)

2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?

(取.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面是边长为的正三角形,,且分别是中点,则异面直线所成角的余弦值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型企业针对改善员工福利的三种方案进行了问卷调查,调查结果如下:

支持方案

支持方案

支持方案

35岁以下的人数

200

400

800

35岁及以上的人数

100

100

400

1)从所有参与调查的人中,用分层随机抽样的方法抽取人,已知从支持方案的人中抽取了6人,求的值.

2)从支持方案的人中,用分层随机抽样的方法抽取5人,这5人中年龄在35岁及以上的人数是多少?年龄在35岁以下的人数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为,图象过点.

1)求的值和的单调增区间;

2)将函数的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若函数在区间上有且只有两个不同零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对平面区域,用表示属于的所有整点(即平面上坐标都是整数的点)的个数.表示由曲线和两直线所围成的区域(包括边界);表示由曲线和两直线所围成的区域(包括边界).______.

查看答案和解析>>

同步练习册答案