精英家教网 > 高中数学 > 题目详情
3.直线2x-y-2=0绕它与y轴的交点逆时针旋转$\frac{π}{2}$所得的直线方程是(  )
A.-x+2y-4=0B.x+2y-4=0C.-x+2y+4=0D.x+2y+4=0

分析 利用相互垂直的直线斜率之间的关系即可得出.

解答 解:直线2x-y-2=0绕它与y轴的交点(0,-2)逆时针旋转$\frac{π}{2}$所得的直线方程为:y=$-\frac{1}{2}$x-2,即x+2y+4=0,
故选:D.

点评 本题考查了相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.直角△ABC的三个顶点在半径为R的球面上,两直角边的长分别为6和8,球心到平面ABC的距离是12,则R=(  )
A.26B.20C.13D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数y=x3-ax2+4在(1,3)内单调递减,则实数a的取值范围是$[\frac{9}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将函数f(x)=$\sqrt{3}$cos(2x+$\frac{π}{3}$)-1的图象向左平移$\frac{π}{3}$个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则函数g(x)具有性质②③④.(填入所有正确性质的序号)
①最大值为$\sqrt{3}$,图象关于直线x=-$\frac{π}{3}$对称;
②图象关于y轴对称;
③最小正周期为π;
④图象关于点($\frac{π}{4}$,0)对称;
⑤在(0,$\frac{π}{3}$)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对于定义域为R的函数f(x),若存在非零实数x0,使函数f(x)在(-∞,x0)和(x0,+∞)上与x轴均有交点,则称x0为函数f(x)的一个“界点”.则下列四个函数中,不存在“界点”的是(  )
A.f(x)=x2+bx-1(b∈R)B.f(x)=|x2-1|C.f(x)=2-|x-1|D.f(x)=x3+2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.选择合适的抽样方法抽样,写出抽样过程.
(1)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样.
(2)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,当x=$\frac{π}{2}$时,f(x)取得最大值3,当x=-$\frac{3π}{2}$时,f(x)取得最小值-3.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数F(x)=f(x)-$\frac{1}{f(x)}$,其中x-log2f(x)=0,则函数F(x)是(  )
A.奇函数且在(-∞,+∞)上是增函数B.奇函数且在(-∞,+∞)上是减函数
C.偶函数且在(-∞,+∞)上是增函数D.偶函数且在(-∞,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l过点P(-1,2),且倾斜角的余弦值为$\frac{\sqrt{2}}{2}$.
(1)求直线l的一般式方程;
(2)求直线l与坐标轴围成的三角形绕y轴在空间旋转成的几何体的体积.

查看答案和解析>>

同步练习册答案