精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且Sn=4an-3(n∈N*).
(1)证明:数列{an}是等比数列;
(2)若数列{bn}满足bn+1=an+bn(n∈N*),且b1=2,求数列{bn}的通项公式.
(1)见解析  (2) bn=3×n-1-1(n∈N*).
解:(1)证明:由Sn=4an-3可知,
当n=1时,a1=4a1-3,解得a1=1.
因为Sn=4an-3,则Sn-1=4an-1-3(n≥2),
所以当n≥2时,
an=Sn-Sn-1=4an-4an-1
整理得anan-1,又a1=1≠0,
所以{an}是首项为1,公比为的等比数列.
(2)由(1)知ann-1
由bn+1=an+bn(n∈N*),
得bn+1-bnn-1.
可得bn=b1+(b2-b1)+ (b3-b2)+…+(bn-bn-1)
=2+=3×n-1-1(n≥2,n∈N*).
当n=1时上式也满足条件.
所以数列{bn}的通项公式为
bn=3×n-1-1(n∈N*).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和Sn与通项an满足Sn=-an.
(1)求数列{an}的通项公式;
(2)设f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=++…+,求T2012;
(3)若cn=an·f(an),求{cn}的前n项和Un.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,且Sn=2an-1;数列{bn}满足bn-1bnbnbn-1(n≥2,n∈N*),b1=1.
(1)求数列{an},{bn}的通项公式;
(2)求数列的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设等比数列{an}中,前n项和为Sn,已知S3=8,S6=7,则a7+a8+a9=(  )
A.B.-C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,若S1=1,S2=2,且Sn+1-3Sn+2Sn-1=0(n∈N*且n≥2),求该数列的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}中,a1=3,an+1=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.
(1)求c的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{bn}是首项为,公比为的等比数列,则数列{nbn}的前n项和Tn=(  )
A.2-B.2-C.2-D.2-

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=x2(x>0)的图象在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

公比为2的等比数列{an}的各项都是正数,且a3a11=16,则a5=(  )
A.1B.2C.4 D.8

查看答案和解析>>

同步练习册答案