精英家教网 > 高中数学 > 题目详情

如图,在正六边形ABCDE中,点P是△CDE内(包括边界)的一个动点,设数学公式(λ,μ∈R)则λ+μ的取值范围


  1. A.
    [1,2]
  2. B.
    [2,3]
  3. C.
    [2,4]
  4. D.
    [3,4]
D
分析:通过建立坐标系,写出点的坐标及直线方程,设动点P的坐标写出动点P的可行域;写出向量的坐标,据已知条件中的向量等式得到λ,μ与x,y的关系代入点P的可行域得λ,μ的可行域,利用线性规划求出λ+μ的取值范围
解答:解:建立如图坐标系,设AB=2,则A(0,0),B(2,0),
C(3,),D(2,2 ),E(0,2 ),F(-1,
则EC的方程:x+y-6=0;CD的方程:x+y-4 =0;
因P是△CDE内(包括边界)的动点,则可行域为

=(x,y),=(2,0),=(-1,),
所以(x,y)=λ(2,0)+μ(-1,
???3≤λ+μ≤4.
则λ+μ的取值范围为[3,4].
故选D.
点评:本题考查向量在几何中的应用,解答的关键是通过建立直角坐标系将问题转化为线性规划问题,通过线性规划求出范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、如图,在直角坐标平面内有一个边长为a,中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为
偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为(  )
A、偶函数B、奇函数C、不是奇函数,也不是偶函数D、奇偶性与k有关

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正六边形ABCDEF中,点O为其中心,则下列判断错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州二模)如图,在正六边形ABCDE中,点P是△CDE内(包括边界)的一个动点,设
AP
AB
AF
(λ,μ∈R)则λ+μ的取值范围(  )

查看答案和解析>>

科目:高中数学 来源:温州二模 题型:单选题

如图,在正六边形ABCDE中,点P是△CDE内(包括边界)的一个动点,设
AP
AB
AF
(λ,μ∈R)则λ+μ的取值范围(  )
A.[1,2]B.[2,3]C.[2,4]D.[3,4]

查看答案和解析>>

同步练习册答案