精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:若x>0,则函数y=x+ 的最小值为1,命题q:若x>1,则x2+2x﹣3>0,则下列命题是真命题的是(
A.p∨q
B.p∧q
C.(¬p)∧(¬q)
D.p∨(¬q)

【答案】A
【解析】解:x>0时,y=x+ ≥2 =
故命题p是假命题,
∵y=x2+2x﹣3=(x+1)2﹣4,对称轴x=﹣1,
函数在(1,+∞)递增,
∴x2+2x﹣3>0,
∴命题q是真命题,
∴p∨q是真命题,
故选:A.
【考点精析】通过灵活运用复合命题的真假,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AB=2BB1=2BC,E为D1C1的中点,连结ED,EC,EB和DB.
(Ⅰ)证明:A1D1∥平面EBC;
(Ⅱ)证明:平面EDB⊥平面EBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,直线.

(1)若直线与曲线有且仅有一个公共点,求公共点横坐标的值;

(2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个路口的红绿灯,红灯亮的时间为40秒,黄灯亮的时间为5秒,绿灯亮的时间为50秒(没有两灯同时亮),当你到达路口时,看见下列三种情况的概率各是多少?
(1)红灯;
(2)黄灯;
(3)不是红灯.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知D是以点A(4,1),B(﹣1,﹣6),C(﹣2,3)为顶点的三角形区域(包括边界及内部).
(1)写出表示区域D的不等式组;
(2)设点B(﹣1,﹣6)、C(﹣2,3)在直线4x﹣3y﹣a=0的异侧,求a的取值范围;
(3)若目标函数z=kx+y(k<0)的最小值为﹣k﹣6,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:

产品A(件)

产品B(件)

研制成本、搭载费用之和(万元)

20

30

计划最大资金额300万元

产品重量(千克)

10

5

最大搭载重量110千克

预计收益(万元)

80

60

试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名同学参加某次数学考试成绩(单位:分)的频率分布直方图如下:

)求频率分布直方图中的值;

)分别求出成绩落在中的学生人数;

)从成绩在的学生中任选2人,求此2人的成绩都在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 ( )

(参考数据:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是一个等差数列,且a2=1,a5=﹣5.
(1)求{an}的通项an
(2)求{an}前n项和Sn的最大值.

查看答案和解析>>

同步练习册答案