精英家教网 > 高中数学 > 题目详情

如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.

(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.

(1)=1.(2)在点P

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知椭圆E:的离心率为,过左焦点且斜率为的直线交椭圆EA,B两点,线段AB的中点为M,直线交椭圆EC,D两点.

(1)求椭圆E的方程;
(2)求证:点M在直线上;
(3)是否存在实数k,使得三角形BDM的面积是三角形ACM的3倍?若存在,求出k的值;
若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点
(1)求椭圆的方程;
(2)直线与椭圆相交于两点, 为原点,在上分别存在异于点的点,使得在以为直径的圆外,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;
(2)求△ABP面积取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆E:+y2=1(a>1)的上顶点为M(0,1),两条过M的动弦MA、MB满足MA⊥MB.
(1)当坐标原点到椭圆E的准线距离最短时,求椭圆E的方程;
(2)若Rt△MAB面积的最大值为,求a;
(3)对于给定的实数a(a>1),动直线AB是否经过一定点?如果经过,求出定点坐标(用a表示);反之,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线x2=4y的焦点为F,过焦点F且不平行于x轴的动直线交抛物线于A、B两点,抛物线在A、B两点处的切线交于点M.

(1)求证:A、M、B三点的横坐标成等差数列;
(2)设直线MF交该抛物线于C、D两点,求四边形ACBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.

(1)求点B的轨迹方程;
(2)当点D位于y轴的正半轴上时,求直线PQ的方程;
(3)若G是圆C上的另一个动点,且满足FG⊥FE,记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别为, 焦距为2,过作垂直于椭圆长轴的弦长为3
(1)求椭圆的方程;
(2)若过点的动直线交椭圆于A、B两点,判断是否存在直线使得为钝角,若存在,求出直线的斜率的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆经过点,离心率,直线的方程为.

(1)求椭圆的方程;
(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案